МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Автоматика и информационные технологии в управлении»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Б1.В.02 «Эконометрика»

Специальность

38.05.01 Экономическая безопасность

Специализация

Экономическая безопасность хозяйствующих субъектов

Уровень подготовки

специалитет

Квалификация выпускника – <u>экономист</u>

Формы обучения – очная

Рязань 2022

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям ОПОП.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций.

Контроль знаний обучающихся проводится в форме промежуточной аттестации.

Промежуточный контроль по дисциплине осуществляется проведением экзамена.

2. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой компетенции (или её части)	Наименование оценочного мероприятия
Раздел 1. Основные понятия, определения и термины в эконометрике	ОПК-1.2	Экзамен
Раздел 2. Базовые понятия теории вероятностей и математической статистики.	ОПК-1.2	Экзамен
Раздел 3. Парная линейная регресссия.	ОПК-1.2	Экзамен
Раздел 4. Множественная линейная регрессия	ОПК-1.2	Экзамен
Раздел 5. Нелинейные регрессионные модели	ОПК-1.2	Экзамен
Раздел 6. Фиктивные переменные в регрессионных моделях	ОПК-1.2	Экзамен
Раздел 7. Эконометрический анализ временных рядов	ОПК-1.2	Экзамен

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Уровень освоения компетенций, формируемых дисциплиной:

а) описание критериев и шкалы оценивания тестирования:

Шкала оценивания	Критерий
3 балла	уровень усвоения материала, предусмотренного программой:
(эталонный уровень)	процент верных ответов на тестовые вопросы от 85 до 100%
2 балла	уровень усвоения материала, предусмотренного программой:
(продвинутый уровень)	процент верных ответов на тестовые вопросы от 75 до 84%
1 балл	уровень усвоения материала, предусмотренного программой:
(пороговый уровень)	процент верных ответов на тестовые вопросы от 60 до 74%
0 баллов	уровень усвоения материала, предусмотренного программой:
	процент верных ответов на тестовые вопросы от 0 до 59%

б) описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий
3 балла	выставляется студенту, который дал полный ответ на вопрос,
(эталонный уровень)	показал глубокие систематизированные знания, смог привести
	примеры, ответил на дополнительные вопросы преподавателя.
2 балла	выставляется студенту, который дал полный ответ на вопрос, но на
(продвинутый уровень)	некоторые дополнительные вопросы преподавателя ответил только с
	помощью наводящих вопросов.
1 балл	выставляется студенту, который дал неполный ответ на вопрос в
(пороговый уровень)	билете и смог ответить на дополнительные вопросы только с
	помощью преподавателя.
0 баллов	выставляется студенту, который не смог ответить на вопрос

На экзамен выносится: тестовое задание, 1 теоретический вопрос. Студент может набрать максимум 6 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Шкала оценивания		Критерий
отлично (эталонный уровень)	6 баллов	Обязательным условием является выполнение всех предусмотренных в течение семестра
хорошо (продвинутый уровень)	4 – 5 баллов	заданий
удовлетворительно (пороговый уровень)	3 баллов	
неудовлетворительно	0 — 2 баллов	Студент не выполнил всех предусмотренных в течение семестра текущих заданий

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация (экзамен)

ОПК-1.2. Оперирует основными понятиями и методами экономических расчетов, современными методами сбора, обработки и анализа статистических данных

Знать

типовые линейные и нелинейные эконометрические модели;

основные этапы эконометрического исследования

Уметь

использовать пакеты прикладных программ для решения профессиональных задач; комментировать полученные результаты

Владеть

информационными технологиями оформления эконометрических расчетов при решении задач

а) типовые тестовые вопросы закрытого типа:

- 1. Эконометрика это научная дисциплина, которая позволяет:
 - а) Измерять производственно-экономические показатели;
 - b) Организовать энергосберегающее производство;
 - с) Строить регрессионные модели для интересующих нас социально-экономических закономерностей;
 - d) Применять математические методы для решения экономических задач.
- 2. Статистической зависимостью является:
 - а) Закон распределения непрерывной случайной величины;
 - b) Зависимость между входной и выходной переменными при наличии других случайных факторов;
 - с) Представление экономической информации в виде таблиц, графиков, диаграмм;
 - d) Циклический характер экономических процессов.
- 3. Что является синонимом термина «экзогенная переменная» (укажите 2 ответа):
 - а) Входная переменная;
 - b) Выходная переменная;
 - с) Объясняющая переменная;
 - d) Несущественная переменная.
- 4. Что является синонимом термина «эндогенная переменная» (укажите 2 ответа):
 - а) Входная переменная;
 - b) Выходная переменная;
 - с) Объясняющая переменная;
 - d) Зависимая переменная.
- 5. В чем состоит суть термина «парная регрессия»:
 - а) Зависимость выходной переменной от двух объясняющих переменных;
 - b) Зависимость выходной переменной от одной объясняющей переменной;
 - с) Наличие двух неучтенных факторов;
 - d) Использование двух выборок из одной генеральной совокупности.
- 6. Какое соотношение описывает парную линейную регрессионную модель:

a)
$$y = a_0 + a_1 x + \varepsilon$$
;

b)
$$y = a_0 + a_1 x + a_2 x^2 + \varepsilon$$
;

c)
$$y = a_0 + a_1 x_1 + a_2 x_2 + \varepsilon$$
;

d)
$$y = a_0 + a_1 \sqrt{x} + \varepsilon$$
.

7. Формула для вычисления коэффициента корреляции имеет вид:

мула для вычислен
a)
$$r = \frac{\operatorname{var}(x)}{\sqrt{\operatorname{var}(y)}};$$

b)
$$r = \frac{\text{cov}(x, y)}{\sqrt{\text{var}(x) \cdot \text{var}(y)}};$$

c)
$$r = 1 - \frac{\operatorname{var}(x)}{\operatorname{var}(y)};$$

d)
$$r = \frac{\operatorname{var}(y)}{\sqrt{\operatorname{var}(x)}}$$
.

- 8. В чем состоит суть термина «множественная регрессия»:
 - а) Использование нескольких выборок из одной генеральной совокупности.
 - b) Наличие нескольких неучтенных факторов:
 - с) Зависимость выходной переменной от нескольких объясняющих переменных;
 - d) Использование большого объема экспериментальных данных.
- 9. Коэффициент корреляции между входной и выходной переменными r = -0.9. Какое утверждение является истинным:

- а) Зависимость между входной и выходной переменными носит прямой характер, теснота зависимости сильная;
- b) Зависимость между входной и выходной переменными носит обратный характер, теснота зависимости сильная;
- с) Зависимость между входной и выходной переменными носит прямой характер, теснота зависимости слабая;
- d) Зависимость между входной и выходной переменными носит обратный характер, теснота зависимости слабая;
- 10. Какое соотношение описывает множественную линейную регрессионную модель:
 - a) $y = a_0 + a_1 x + \varepsilon$;
 - b) $y = a_0 + a_1 x + a_2 x^2 + \varepsilon$;
 - **c)** $y = a_0 + a_1 x_1 + a_2 x_2 + \varepsilon$;
 - d) $y = a_0 + a_1 \sqrt{x} + \varepsilon$.
- 11. Коэффициент корреляции между входной и выходной переменными r = 0.3. Какое утверждение является истинным:
 - а) Зависимость между входной и выходной переменными носит прямой характер, теснота зависимости сильная;
 - b) Зависимость между входной и выходной переменными носит обратный характер, теснота зависимости сильная;
 - с) Зависимость между входной и выходной переменными носит прямой характер, теснота зависимости слабая;
 - d) Зависимость между входной и выходной переменными носит обратный характер, теснота зависимости слабая;
- 12. Фиктивные переменные включаются в регрессионную модель, если необходимо учесть влияние:
 - а) неучтенных факторов;
 - b) качественных факторов;
 - с) количественных переменных;
 - d) трудноизмеримых переменных.
- 13. Какое соотношение описывает парную регрессионную модель с использованием полинома 2-го порядка:
 - a) $y = a_0 + a_1 x + \varepsilon$;
 - b) $y = a_0 + a_1 x + a_2 x^2 + \varepsilon$;
 - c) $y = a_0 + a_1 x_1 + a_2 x_2 + \varepsilon$;
 - d) $y = a_0 + a_1 \sqrt{x} + \varepsilon$.
- 14. Какая регрессионная модель содержит гиперболическое уравнение регрессии:
 - a) $y = a_0 + a_1 x + \varepsilon$;
 - b) $y = a_0 + a_1 x + a_2 x^2 + \varepsilon$;
 - c) $y = a_0 + a_1 x_1 + a_2 x_2 + \varepsilon$;
 - **d)** $y = a_0 + \frac{a_1}{x} + \varepsilon$.
- 15. Коэффициент корреляции между входной и выходной переменными r = 0.9. Какое утверждение является истинным:
 - а) Зависимость между входной и выходной переменными носит прямой характер, теснота зависимости сильная;
 - b) Зависимость между входной и выходной переменными носит обратный характер, теснота зависимости сильная;
 - с) Зависимость между входной и выходной переменными носит прямой характер, теснота зависимости слабая;

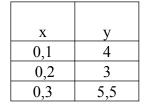
- d) Зависимость между входной и выходной переменными носит обратный характер, теснота зависимости слабая;
- 16. Какое соотношение описывает множественную линейную регрессионную модель:
 - a) $y = a_0 + a_1 x + \varepsilon$;
 - b) $y = a_0 + a_1 x + a_2 x^2 + \varepsilon$;
 - **c)** $y = a_0 + a_1 x_1 + a_2 x_2 + \varepsilon$;
 - d) $y = a_0 + a_1 \sqrt{x} + \varepsilon$.
- 17. Коэффициент корреляции между входной и выходной переменными r = -0.3. Какое утверждение является истинным:
 - а) Зависимость между входной и выходной переменными носит прямой характер, теснота зависимости сильная;
 - b) Зависимость между входной и выходной переменными носит обратный характер, теснота зависимости сильная;
 - с) Зависимость между входной и выходной переменными носит прямой характер, теснота зависимости слабая;
 - d) Зависимость между входной и выходной переменными носит обратный характер, теснота зависимости слабая;
- 18. Исследуется зависимость заработной платы от стажа работы и уровня образования. Среди сотрудников имеются лица со средним, средним техническим и высшим образованием. Сколько фиктивных переменных нужно ввести в регрессионную модель:
 - a) 1;
 - b) 2:
 - c) 3;
 - d) 4.
- 19. Какая встроенная функция пакета Excel позволяет вычислять коэффициент корреляции между входной и выходной переменными при эконометрическом исследовании:
 - а) МУМНОЖ;
 - **b)** КОРРЕЛ:
 - с) МОПРЕД;
 - d) TPAHCΠ.
- 20. Какая встроенная функция пакета Excel позволяет найти критическое значение *t*-статистики при определении статистической значимости параметров уравнения регрессии:
 - а) СТЬЮДРАСПОБР;
 - b) КОРРЕЛ;
 - с) МОБР;
 - d) TPAHCII.
- 21. Какая встроенная функция пакета Excel позволяет найти критическое значение F-статистики при определении статистической значимости коэффициента детерминации:
 - а) СТЬЮДРАСПОБР;
 - b) КОРРЕЛ:
 - с) ГРАСПОБР;
 - d) TPAHCΠ.
- 22. Эконометрическое исследование часто проводится в векторно-матричной форме. Какая встроенная функция пакета Excel позволяет перемножить две матрицы:
 - а) МУМНОЖ;
 - b) КОРРЕЛ:
 - с) МОБР;
 - d) TPAHCΠ.

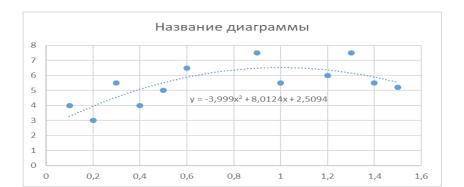
- 23. Эконометрическое исследование часто проводится в векторно-матричной форме. Какая встроенная функция пакета Excel позволяет вычислить обратную матрицу:
 - а) МУМНОЖ;
 - b) КОРРЕЛ:
 - с) МОБР;
 - d) ΤΡΑΗCΠ.
- 24. Какая встроенная функция пакета Excel позволяет вычислить коэффициент детерминации на основании исходных значений входной и выходной переменных:
 - а) СТЬЮДРАСПОБР;
 - b) КОРРЕЛ:
 - с) FРАСПОБР;
 - d) КВПИРСОН.
- 25. Какая встроенная функция пакета Excel позволяет вычислять определитель матрицы
 - а) МУМНОЖ;
 - b) КОРРЕЛ:
 - с) МОПРЕД;
 - d) TPAHCΠ.

б) расчетные задания открытого типа:

Задание 1. Имеются следующие данные о ежемесячной прибыли от продажи некоторого товара (y, млн руб.) в зависимости от ежемесячных расходов на рекламу (x, млн руб.).

У	4,0	3,0	5,5	4,0	5,0	6,5	7,5	5,5	6,0	7,5	5,5	5,2
x	0,1	0,2	0,3	0,4	0,5	0,6	0,9	1,0	1,2	1,3	1,4	1,5


- а) с помощью пакета Excel найдите уравнение регрессии на основе полинома 2 порядка;
- б) используя найденное уравнение регрессии, найдите среднее значение прибыли при затратах на рекламу 0,8 млн руб.


Решение:

а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем уравнение регрессии в виде полинома 2 порядка:

$$\hat{v} = 2,5094 + 8,0124x - 3,999x^2$$
.

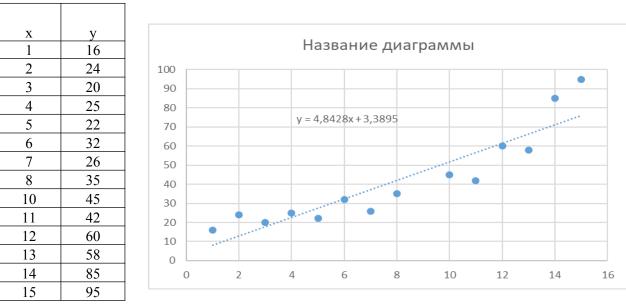
б) подставив в это уравнение затраты на рекламу x = 0.8 млн руб., найдем среднее значение прибыли: $\hat{y} = 2.5094 + 8.0124 \cdot 0.8 - 3.999 \cdot 0.64 = 6.3599$ млн руб.

0,4	4
0,5	5
0,6	6,5
0,9	7,5
1,0	5,5
1,2	6
1,3	7,5
1,4	5,5
1,5	5,2

Задание 2. Имеются следующие данные о затратах на содержание и ремонт оборудования (y, тыс. руб.) в зависимости от его возраста (x, мес.).

У	16	24	20	25	22	32	26	35	45	42	60	58	85	95
x	1	2	3	4	5	6	7	8	10	11	12	13	14	15

- а) с помощью пакета Excel найдите линейное уравнение регрессии;
- б) используя найденное уравнение регрессии, найдите средние затраты на содержание и ремонт при возрасте оборудования 9 мес.


Решение:

а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем линейное уравнение регрессии:

$$\hat{y} = 3,3895 + 4,8428x$$
.

б) подставив в это уравнение возраст оборудования x = 9 мес., найдем средние затраты на содержание и ремонт: $\hat{y} = 3,3895 + 4,8428 \cdot 9 = 46,9747$ тыс. руб.

Решение в пакете Excel

Задание 3. Исследуется зависимость заработной платы от стажа работы и уровня образования. Среди сотрудников имеются лица со средним, средним техническим и высшим образованием. Сколько фиктивных переменных нужно ввести в регрессионную модель?

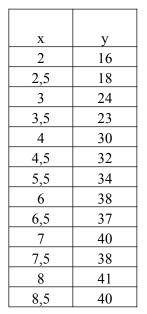
Ответ: число фиктивных переменных должно быть на единицу меньше числа градаций качественного фактора. В данном задании качественным фактором является уровень образования сотрудников с тремя градациями. Поэтому нужно ввести в регрессионную модель две фиктивных переменных.

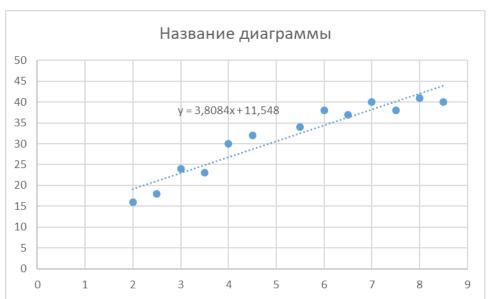
Задание 4. На сельскохозяйственных предприятиях региона выращивается рожь озимых сортов. Исследуется зависимость урожайности $(y, \mathbf{u}/\mathbf{ra})$ от количества удобрений $(x, \mathbf{u}/\mathbf{ra})$. Выборка из 13 предприятий дала следующие результаты.

у	16	18	24	23	30	32	34	38	37	40	38	41	40
X	2,0	2,5	3,0	3,5	4,0	4,5	5,5	6,0	6,5	7,0	7,5	8,0	8,5

а) с помощью пакета Excel найдите линейное уравнение регрессии;

б) используя найденное уравнение регрессии, найдите среднюю урожайность при количестве удобрений 5 ц/га.


Решение:


а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем линейное уравнение регрессии:

$$\hat{y} = 11,548 + 3,8084x$$

б) подставив в это уравнение количество удобрений x = 5 ц/га., найдем среднюю урожайность: $\hat{y} = 11,548 + 3,8084 \cdot 5 = 30,59$ ц/га.

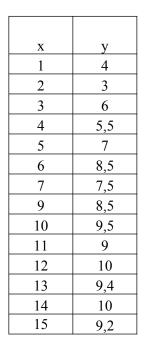
Решение в пакете Excel

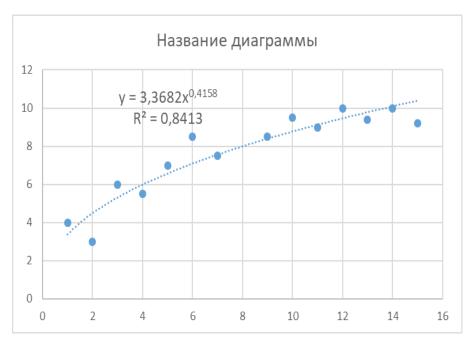
Задание 5. Между выходной и входной переменными имеется линейная зависимость; коэффициент корреляции r = 0.8. Какое значение примет коэффициент детерминации?

Ответ: для линейной регрессионной зависимости коэффициент детерминации равен квадрату коэффициента корреляции. Поэтому коэффициент детерминации $R^2 = 0.64$;

Задание 6. Имеются следующие данные о производительности труда (y, выработка продукции в единицу времени в денежном выражении, тыс. руб./ч) в зависимости от стажа работы сотрудника (x, лет).

у	4	3	6	5,5	7	8,5	7,5	8,5	9,5	9	10	9,4	10	9,2
x	1	2	3	4	5	6	7	9	10	11	12	13	14	15


- а) с помощью пакета Excel найдите уравнение регрессии и коэффициент детерминации на основе **степенной** модели;
 - б) прокомментируйте коэффициент детерминации.


а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем степенное уравнение регрессии:

$$\hat{v} = 3.3682x^{0.4158}$$

б) степенное уравнение регрессии на 84,13 % объясняет зависимость производительности труда от стажа работы сотрудника и на 15,87 % от влияния других неучтенных факторов.

Решение в пакете Excel

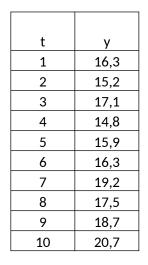
Задание 7. В макроэкономике хорошо известна производственная функция Кобба-Дугласа $Y = A \cdot K^{\alpha} \cdot L^{\beta}$, где Y - выпуск продукции в денежном выражении, K - стоимость основных производственных фондов, L - объем трудовых ресурсов. Запишите выражение для линеаризованной производственной функции Кобба-Дугласа.

Ответ: для линеаризации производственной функции необходимо прологарифмировать левую и правую части исходной производственной функции. В результате получим:

$$\ln Y = \ln A + \alpha \cdot \ln K + \beta \cdot \ln L$$

Задание 8. Имеются следующие данные об урожайности озимой пшеницы (y, ц/га) за 10 лет:

Ī	t	1	2	3	4	5	6	7	9	10
Ī	у	16,3	15,2	17,1	14,8	15,9	16,3	19,2	18,7	20,7


- а) с помощью пакета Excel найдите уравнение тренда временного ряда, полагая, что он **линейный**;
- б) на основании уравнения тренда сделайте точечный прогноз урожайности озимой пшеницы на 1 год вперед.


Решение:

а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем линейное уравнение тренда:

$$\hat{y} = 14,513 + 0,483 t$$
.

б) подставив в уравнение тренда момент времени t = 11, найдем точечный прогноз урожайности озимой пшеницы на 1 год вперед: $\hat{y} = 14,513 + 0,483 \cdot 11 = 19,826$ ц/га.

Задание 9. В нелинейном регрессионном анализе часто используют полиномиальные модели. Запишите выражение парной регрессионной модели на основе полинома 2-го порядка.

Otbet: $y = a_0 + a_1 x + a_2 x^2 + \varepsilon$

Задание 10. Имеются следующие данные об уровне механизации работ (x, %) и производительности труда (y, %) выработка продукции в единицу времени в денежном выражении, тыс. руб./ч) для 13 однотипных предприятий.

У	20	24	28	30	31	33	37	38	40	41	43	45	48
x	28	35	36	40	41	47	54	60	55	61	60	69	76

- а) с помощью встроенной функции пакета Excel найдите коэффициент корреляции между переменными x и y;
- b) на основании коэффициента корреляции оцените направление и тесноту зависимости между переменными x и y.

Решение

- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ(массив 1;массив 2). С использованием этой функции коэффициент корреляции r=0.97
- б) такое значение коэффициента корреляции говорит о прямом направлении зависимости между переменными x и y, причем теснота зависимости достаточно сильная.

у	X		
20	28		
24	35		
28	36	r(y,x)	0,97
30	40		
31	50		
33	47		
37	54		
38	60		

40	55		
41	61		
43	60		
45	69		
48	76		

Задание 11. Между выходной и входной переменными имеется линейная зависимость обратного характера; коэффициент детерминации $R^2 = 0.81$. Какое значение примет коэффициент корреляции?

Ответ: для линейной регрессионной зависимости коэффициент корреляции r выражается через коэффициент детерминации следующим образом: $r = \pm \sqrt{R^2}$. Знак (+) имеет место при прямом характере зависимости, знак (-) при обратном. В данном случае коэффициент корреляции r = -0.9.

Задание 12. Имеются следующие данные о ежемесячной прибыли от продажи некоторого товара (y, млн руб.) в зависимости от ежемесячных расходов на рекламу (x, млн руб.).

X	0,1	0,2	0,3	0,4	0,5	0,6	0,9	1,0	1,2	1,3	1,4	1,5
у	4,0	3,0	5,5	4,0	5,0	6,5	7,5	8,5	9,0	9,5	10,0	10,2

- а) с помощью пакета Excel найдите коэффициент корреляции между переменными х и у;
- б) на основании коэффициента корреляции оцените направление и тесноту зависимости между переменными x и y.

Решение:

- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ(массив 1;массив 2). С использованием этой функции коэффициент корреляции r=0.97
- б) такое значение коэффициента корреляции говорит о прямом направлении зависимости между переменными x и y, причем теснота зависимости достаточно сильная.

X	у		
0,1	4		
0,2	3	r(y,x)	0,97
0,3	5,5		
0,4	4		
0,5	5		
0,6	6,5		
0,9	7,5		

1	8,5		
1,2	9		
1,3	9,5		
1,4	10		
1,5	10,2		

Задание 13. Исследуются 15 предприятий одной и той же отрасли. Для каждого предприятия известны объем товарной продукции (у, млрд. руб.), стоимость основных фондов (x_1 , млрд. руб.), численность работников (x_2 , чел.).

a)	c
пакета	
найдите	Э

IN=	\mathcal{F} , объем III,	$oldsymbol{\mathcal{X}}_1$, стоимость	x_2 , числен. работн.,
п/п	млрд. руб.	ОΦ,	чел.
		млрд. руб.	
1	6,6	3,9	45
2	5,4	2,2	31
3	9,9	7,0	67
4	5,3	2,4	34
5	9,8	6,0	57
6	8,7	4,6	47
7	9,8	4,3	43
8	14,8	6,7	58
9	11,0	4,2	41
10	7,7	3,9	39
11	6,5	3,5	37
12	10,4	3,8	40
13	5,4	2,8	30
14	8,6	5,2	55
15	6,1	3,0	32

помощью Excel

коэффициенты корреляции между выходной переменной ${\mathcal Y}$ и каждой объясняющей переменной ${\mathcal X}_1$ и ${\mathcal X}_2$;

б) какая из объясняющих переменной оказывает наибольшее влияние на выходную переменную?

- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ(массив 1;массив 2). С использованием этой функции найдены коэффициенты корреляции $r(y,x_1)=0.79$ и $r(y,x_2)=0.69$.
- б) такие значения коэффициентов корреляции говорят о том, что объясняющая переменная \mathcal{X}_1 (стоимость ОФ) оказывает более сильное влияние на выходную переменную \mathcal{Y} (объем ТП) по сравнению с объясняющей переменной \mathcal{X}_2 (численность работников).

Решение 1	в пакете	Excel
-----------	----------	-------

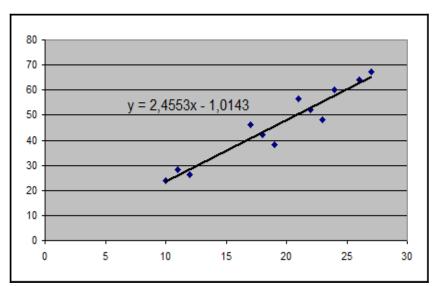
У	x1	x2		
6,6	3,9	45	r(y,x1)	0,79
5,4	2,2	31		
9,9	7	67	r(y,x2)	0,69
5,3	2,4	34		
9,8	6	57		
8,7	4,6	47		
9,8	4,3	43		
14,8	6,7	58		
11	4,2	41		
7,7	3,9	39		
6,5	3,5	37		
10,4	3,8	40		
5,4	2,8	30		
8,6	5,2	55		
6,1	3	32		

Задание 14. Имеются следующие данные о средней цене товара у (тыс. руб.) и дальности его перевозки х (км).

№ п/п	X	y
1	12	26,18
2	19	38,11
3	17	46,03
4	27	67,24
5	21	56,57
6	22	52,05
7	10	24,05
8	24	59,99
9	26	64,08
10	23	48,15
11	11	28,08
12	18	42,01

- а) с помощью пакета Excel найдите линейное уравнение регрессии;
- б) используя найденное уравнение регрессии, найдите среднюю цену товара при дальности перевозки 15 км.

Решение:


а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем линейное уравнение регрессии:

$$\hat{y} = 2,4553x - 1,0143$$
.

б) подставив в это уравнение дальность перевозки x = 15 км, найдем среднюю цену товара: $\hat{y} = 2,4553 \cdot 15 - 1,0143 = 35,815$ тыс. руб.

Решение в пакете Excel

№	X	y
п/п		
1	12	26,18
2	19	38,11
3	17	46,03
4	27	67,24
5	21	56,57
6	22	52,05
7	10	24,05
8	24	59,99
9	26	64,08
10	23	48,15
11	11	28,08
12	18	42,01

Задание 15. Исследуются 15 предприятий одной и той же отрасли. Для каждого предприятия известны объем товарной продукции (у, млрд. руб.), стоимость основных фондов (x_1 , млрд. руб.), численность работников (x_2 , чел.).

	Nº	$\mid \; \mathcal{Y}$, объем ТП, $\mid \;$	\mathcal{X}_1 , СТОИМОСТЬ	x_2 , числен. работн.,	
	п/п	млрд. руб.	ОΦ,	чел.	
			млрд. руб.		
	1	6,6	3,9	45	
	2	5,4	2,2	31	
	3	9,9	7,0	67	
	4	5,3	2,4	34	
	5	9,8	6,0	57	
	6	8,7	4,6	47	
	7	9,8	4,3	43	
	8	14,8	6,7	58	
	9	11,0	4,2	41	
	10	7,7	3,9	39	
a) c	11	6,5	3,5	37	помощью
пакета	12	10,4	3,8	40	Excel
найдите	13	5,4	2,8	30	
	14	8,6	5,2	55	
	15	6,1	3,0	32	

коэффициент корреляции между объясняющими переменными x_1 и x_2 ;

б) на основании найденного коэффициента корреляции установите наличие или отсутствие мультиколлинеарности между объясняющими переменными.

Решение:

- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ(массив 1;массив 2). С использованием этой функции найден коэффициент корреляции $r(x_1,x_2)=0.97$.
- б) такое значения коэффициентов корреляции говорит о наличии мультиколлинеарности между объясняющими переменными.

Решение в пакете Excel

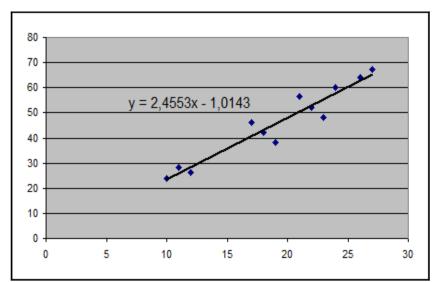
У	x1	x2		
6,6	3,9	45		
5,4	2,2	31	r(x1,x2)	0,97
9,9	7	67		
5,3	2,4	34		
9,8	6	57		
8,7	4,6	47		
9,8	4,3	43		
14,8	6,7	58		
11	4,2	41		
7,7	3,9	39		
6,5	3,5	37		
10,4	3,8	40		
5,4	2,8	30		
8,6	5,2	55		
6,1	3	32		

Задание 16. Имеются следующие данные о средней цене товара у (тыс. руб.) и дальности его перевозки х (км).

№ п/п	X	y
1	12	26,18
2	19	38,11
3	17	46,03
4	27	67,24
5	21	56,57
6	22	52,05
7	10	24,05
8	24	59,99
9	26	64,08
10	23	48,15
11	11	28,08
12	18	42,01

- а) с помощью пакета Excel найдите линейное уравнение регрессии $\hat{y} = a_0 + a_1 x$;
- б) объясните экономический смысл коэффициента a_1 .

Решение:


а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем линейное уравнение регрессии:

$$\hat{y} = -1,0143 + 2,4553x$$

б) коэффициент $a_1 = 2,4553$ показывает увеличение средней цены товара (тыс. руб.) при увеличении дальности перевозки на $1\,\mathrm{km}$.

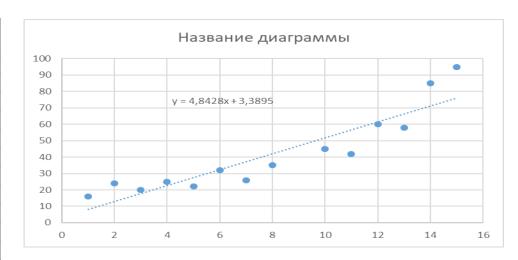
Решение в пакете Excel

No॒	X	у
Π/Π		
1	12	26,18
2	19	38,11
3	17	46,03
4	27	67,24
5	21	56,57
6	22	52,05
7	10	24,05
8	24	59,99
9	26	64,08
10	23	48,15
11	11	28,08
12	18	42,01

Задание 17. Имеются следующие данные о затратах на содержание и ремонт оборудования (y, тыс. руб.) в зависимости от его возраста (x, мес.).

у	16	24	20	25	22	32	26	35	45	42	60	58	85	95
x	1	2	3	4	5	6	7	8	10	11	12	13	14	15

- а) с помощью пакета Excel найдите линейное уравнение регрессии $\hat{y} = a_0 + a_1 x$;
- б) объясните экономический смысл коэффициента a_1 .


Решение:

а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем линейное уравнение регрессии:

$$\hat{y} = 3,3895 + 4,8428x$$

б) коэффициент $a_1 = 4.8428$ показывает увеличение затрат на содержание и ремонт оборудования (тыс. руб.) при увеличении его возраста на 1 мес.

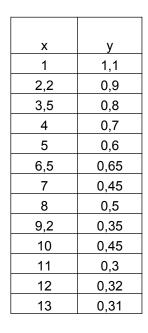
X	у
1	16
2	24
3	20
4	25
5	22
6	32
7	26
8	35
10	45
11	42
12	60
13	58
14	85

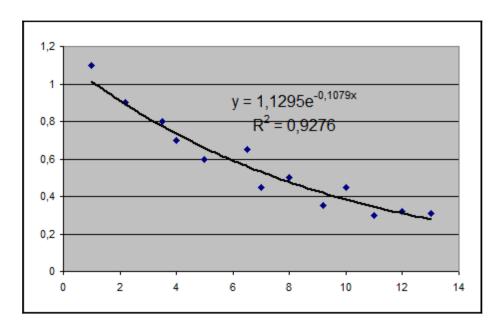
15	95

Задание 18. Имеются следующие данные о себестоимости производства одного монитора (y, тыс. руб.) в зависимости от объема партии (x, тыс. шт.).

У	1,1	0,9	0,8	0,7	0,6	0,65	0,45	0,5	0,35	0,45	0,3	0,32	0,31
x	1,0	2,2	3,5	4,0	5,0	6,5	7,0	8,0	9,2	10	11	12	13

- а) с помощью пакета Excel найдите уравнение регрессии и коэффициент детерминации на основе экспоненциальной модели;
- б) прокомментируйте коэффициент детерминации.


Решение:


а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем экспоненциальное уравнение регрессии:

$$\hat{y} = 1,1295 e^{-0,1079 x}$$
.

б) экспоненциальное уравнение регрессии на 92,76% объясняет зависимость себестоимости монитора от объема партии и на 7,24% от влияния других неучтенных факторов.

Решение в пакете Excel

Задание 19. Имеются следующие данные о себестоимости производства одного монитора (y, тыс. руб.) в зависимости от объема партии (x, тыс. шт.).

y	1,1	0,9	0,8	0,7	0,6	0,65	0,45	0,5	0,35	0,45	0,3	0,32	0,31
х	1,0	2,2	3,5	4,0	5,0	6,5	7,0	8,0	9,2	10	11	12	13

- а) с помощью пакета Excel найдите коэффициент корреляции между переменными у и х;;
- б) установите направление и тесноту зависимости между этими переменными.

- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ (массив 1; массив 2). С использованием этой функции коэффициент корреляции r = -0.94.
- б) отрицательное значение коэффициента корреляции говорит об обратном направлении зависимости между переменными x и y, причем теснота зависимости достаточно сильная.

Решение в пакете Excel

Х	у		
1	1,1		
2,2	0,9	r(y,x)	-0,94
3,5	0,8		
4	0,7		
5	0,6		
6,5	0,65		
7	0,45		
8	0,5		
9,2	0,35		
10	0,45		
11	0,3		
12	0,32		
13	0,31		

Задание 20. Исследуются 15 предприятий одной и той же отрасли. Для каждого предприятия известны объем товарной продукции (у, млрд. руб.), стоимость основных фондов (x_1 , млрд. руб.), средний возраст оборудования (x_2 , мес.).

	Nº	${\cal Y}$, объем ТП,	\mathcal{X}_1 , стоимость	\mathcal{X}_2 , ср. возраст,	
	п/п	млрд. руб.	ОΦ,	мес.	
			млрд. руб.		
	1	6,6	3,9	45	
	2	5,4	2,2	47	
	3	9,9	7,0	27	
	4	5,3	2,4	54	
	5	9,8	6,0	37	
	6	8,7	4,6	37	
	7	9,8	4,3	43	<u> </u>
	8	14,8	6,7	28	
:	9	11,0	4,2	41	помощью
	10	7,7	3,9	39	Excel
	11	6,5	3,5	50	
	12	10,4	3,8	40	
	13	5,4	2,8	56	
	14	8,6	5,2	35	
	15	6,1	3,0	48	

а) спакетанайдите

коэффициент корреляции между объясняющими переменными x_1 и x_2 ;

б) на основании найденного коэффициента корреляции установите наличие или отсутствие мультиколлинеарности между объясняющими переменными.

- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ(массив 1;массив 2). С использованием этой функции найден коэффициент корреляции $r(x_1,x_2)=-0.91$.
- б) такое значения коэффициентов корреляции говорит о наличии мультиколлинеарности между объясняющими переменными.

Решение в пакете Excel

У	x1	x2		
6,6	3,9	45		
5,4	2,2	47	r(x1,x2)	-0,91
9,9	7	27		
5,3	2,4	54		
9,8	6	37		
8,7	4,6	37		
9,8	4,3	43		
14,8	6,7	28		
11	4,2	41		
7,7	3,9	39		
6,5	3,5	50		
10,4	3,8	40		
5,4	2,8	56		
8,6	5,2	35		
6,1	3	48		

Задание 21. Между выходной и входной переменными имеется линейная зависимость; коэффициент корреляции r = -0.8. Какое значение примет коэффициент детерминации?

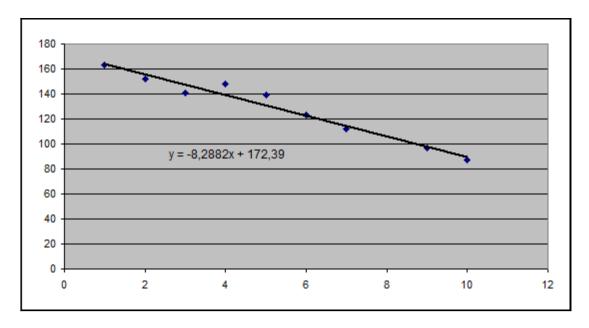
Ответ: для линейной регрессионной зависимости коэффициент детерминации равен квадрату коэффициента корреляции. Поэтому коэффициент детерминации $R^2 = 0.64$.

Задание 22. Имеются следующие данные о количестве стационарных телефонов в городе (тыс. шт.) за последние 10 лет:

t	1	2	3	4	5	6	7	9	10
у	163	152	141	148	139	123	112	97	87

- а) с помощью пакета Excel найдите уравнение тренда временного ряда, полагая, что он линейный;
- б) на основании уравнения тренда сделайте точечный прогноз количества стационарных телефонов в городе на 1 год вперед.

Решение:


а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем линейное уравнение тренда:

$$\hat{y} = 172,39 - 8,2882 t$$

б) подставив в уравнение тренда момент времени t = 11, найдем точечный прогноз количества стационарных телефонов в городе на 1 год вперед:

$$\hat{y} = 172,39 - 8,2882 \cdot 11 = 81,22 \text{ mm}$$
.

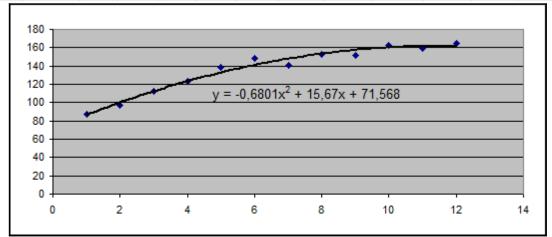
	t	1	2	3	4	5	6	7	9	10
Ī	У	163	152	141	148	139	123	112	97	87

Задание 23. Имеются следующие данные об урожайности картофеля (ц/га) в одном из районов области за последние 12 лет:

t	1	2	3	4	5	6	7	8	9	10	11	12
У	87	97	112	123	139	148	141	153	152	163	159	165

- а) с помощью пакета Excel найдите уравнение тренда, используя полином 2 порядка;
- б) на основании уравнения тренда сделайте точечный прогноз урожайности картофеля на 1 год вперед.

Решение:


а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем уравнение тренда в виде полинома 2 порядка:

$$\hat{y} = 71,568 + 15,67t - 0,6801t^2$$
.

б) подставив в уравнение тренда момент времени t=13, найдем точечный прогноз урожайности картофеля на 1 год вперед:

$$\hat{y} = 71,568 + 15,67 \cdot 13 - 0,6801 \cdot 169 = 160,34 \text{ H/ra}.$$

t	1	2	3	4	5	6	7	8	9	10	11	12
у	87	97	112	123	139	148	141	153	152	163	159	165
Г												$\overline{}$

Задание 24. На сельскохозяйственных предприятиях региона выращивается рожь озимых сортов. Исследуется зависимость урожайности $(y, \mu/ra)$ от количества удобрений $(x, \mu/ra)$. Выборка из 13 предприятий дала следующие результаты.

у	16	18	24	23	30	32	34	38	37	40	38	41	40
x	2,0	2,5	3,0	3,5	4,0	4,5	5,5	6,0	6,5	7,0	7,5	8,0	8,5

а) с помощью пакета Excel найдите коэффициент корреляции между переменными у и х;

б) на основании коэффициент корреляции установите направление и тесноту зависимости между этими переменными.

Решение:

- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ(массив 1;массив 2). С использованием этой функции коэффициент корреляции r=0.95
- б) положительное значение коэффициента корреляции говорит о прямом направлении зависимости между переменными x и y, причем теснота зависимости достаточно сильная.

Решение в пакете Excel

У	16	18	24	23	30	32	34	38	37	40	38	41	40
x	2	2,5	3	3,5	4	4,5	5,5	6	6,5	7	7,5	8	8,5
				r(y,x)	0,95								

Задание 25. Имеются следующие данные о затратах на содержание и ремонт оборудования (y, тыс. руб.) в зависимости от его возраста (x, мес.).

У	16	24	20	25	22	32	26	35	45	42	60	58	85	95
x	1	2	3	4	5	6	7	8	10	11	12	13	14	15

- а) с помощью пакета Excel найдите коэффициент корреляции между переменными у и х;
- б) на основании коэффициент корреляции установите направление и тесноту зависимости между этими переменными.

Решение:

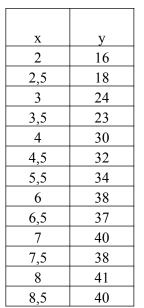
- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ(массив 1;массив 2). С использованием этой функции коэффициент корреляции r=0.91
- б) положительное значение коэффициента корреляции говорит о прямом направлении зависимости между переменными x и y, причем теснота зависимости достаточно сильная.

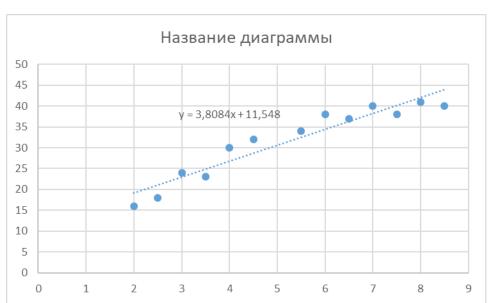
Решение в пакете Excel

У	16	24	20	25	22	32	26	35	45	42	60	58	85	95
x	1	2	3	4	5	6	7	8	10	11	12	13	14	15
					r(y,x)	0,91								

Задание 26. На сельскохозяйственных предприятиях региона выращивается рожь озимых сортов. Исследуется зависимость урожайности $(y, \ \text{ц/гa})$ от количества удобрений $(x, \ \text{ц/гa})$. Выборка из 13 предприятий дала следующие результаты.

у	16	18	24	23	30	32	34	38	37	40	38	41	40
X	2,0	2,5	3,0	3,5	4,0	4,5	5,5	6,0	6,5	7,0	7,5	8,0	8,5


- а) с помощью пакета Excel найдите линейное уравнение регрессии $\hat{y} = a_0 + a_1 x$;
- б) объясните экономический смысл коэффициента a_1 .


а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем линейное уравнение регрессии:

$$\hat{y} = 11,548 + 3,8084x$$

б) коэффициент $a_1 = 3.8084$ показывает увеличение урожайности (ц/га) при увеличении количества удобрений на 1 ц/га.

Решение в пакете Excel

Задание 27. Имеются следующие данные о производительности труда (y, выработка продукции в единицу времени в денежном выражении, тыс. руб./ч) в зависимости от стажа работы сотрудника (x, лет).

y	4	3	6	5,5	7	8,5	7,5	8,5	9,5	9	10	9,4	10	9,2
X	1	2	3	4	5	6	7	9	10	11	12	13	14	15

- а) с помощью пакета Excel найдите коэффициент корреляции между переменными у и х;
- б) на основании коэффициент корреляции установите направление и тесноту зависимости между этими переменными.

Решение:

- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ(массив 1;массив 2). С использованием этой функции коэффициент корреляции r=0.90.
- б) положительное значение коэффициента корреляции говорит о прямом направлении зависимости между переменными x и y, причем теснота зависимости достаточно сильная.

у	4	3	6	5,5	7	8,5	7,5	8,5	9,5	9	10	9,4	10	9,2
x	1	2	3	4	5	6	7	9	10	11	12	13	14	15
					r(y,x)	0.90								

Задание 28. Имеются следующие данные о средней цене товара у (тыс. руб.) и дальности его перевозки х (км).

№ п/п	X	у
1	12	26,18
2	19	38,11

3	17	46,03
4	27	67,24
5	21	56,57
6	22	52,05
7	10	24,05
8	24	59,99
9	26	64,08
10	23	48,15
11	11	28,08
12	18	42,01

- а) с помощью пакета Excel найдите коэффициент корреляции между переменными у и х;
- б) на основании коэффициент корреляции установите направление и тесноту зависимости между этими переменными.

Решение:

- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ(массив 1;массив 2). С использованием этой функции коэффициент корреляции r=0.96
- б) положительное значение коэффициента корреляции говорит о прямом направлении зависимости между переменными x и y, причем теснота зависимости достаточно сильная.

Решение в пакете Excel

X	y		
12	26,2		
19	38,1		
17	46		
27	67,2	r(y,x)	0,96
21	56,6		
22	52,1		
10	24,1		
24	60		
26	64,1		
23	48,2		
11	28,1		
18	42		

Задание 29. Проводится эконометрическое исследование с использованием регрессионной модели $y = a_0 + a_1 x_1 + a_2 x_2 + \varepsilon$. Найдены *t*-статистики коэффициентов a_0, a_1, a_2 и критическое значение *t*-статистики:

$$t(a_0) = 3,15;$$
 $t(a_1) = 4,23;$ $t(a_2) = 0,89;$ $t_{KDMM} = 2,179.$

Какой вывод должен сделать исследователь на основе полученного результата?

Ответ: так как $|t(a_2)| < t_{\kappa pum}$, то коэффициент a_2 не является статистически значимым. Поэтому объясняющую переменную x_2 нужно удалить из регрессионной модели и провести новое исследование на основе регрессионной модели $y = a_0 + a_1 x_1 + \varepsilon$.

Задание 30. Проводится эконометрическое исследование с использованием регрессионной модели $y = a_0 + a_1 x_1 + a_2 x_2 + \varepsilon$. Найдены *t*-статистики коэффициентов a_0, a_1, a_2 и критическое значение *t*-статистики:

$$t(a_0) = 3.2$$
; $t(a_1) = -1.23$; $t(a_2) = 2.89$; $t_{\kappa pum} = 2.179$.

Какой вывод должен сделать исследователь на основе полученного результата?

Ответ: так как $|t(a_1)| < t_{\kappa pum}$, то коэффициент a_1 не является статистически значимым. Поэтому объясняющую переменную x_1 нужно удалить из регрессионной модели и провести новое исследование на основе регрессионной модели $y = a_0 + a_2 x_2 + \varepsilon$.

Задание 31. Проводится эконометрическое исследование с использованием регрессионной модели $y = a_0 + a_1 x_1 + a_2 x_2 + \varepsilon$. Найдены *t*-статистики коэффициентов a_0, a_1, a_2 и критическое значение *t*-статистики:

$$t(a_0) = 3.15;$$
 $t(a_1) = 4.23;$ $t(a_2) = 2.89;$ $t_{KDUM} = 2.179.$

Какой вывод должен сделать исследователь на основе полученного результата?

Ответ: все коэффициенты являются статистически значимыми, поэтому полученное уравнение регрессии следует признать качественным.

Задание 32. Проводится эконометрическое исследование с использованием регрессионной модели $y = a_0 + a_1 x_1 + a_2 x_2 + \varepsilon$. Найдены *t*-статистики коэффициентов a_0, a_1, a_2 и критическое значение *t*-статистики:

$$t(a_0) = 3,15;$$
 $t(a_1) = -4,23;$ $t(a_2) = 2,89;$ $t_{\kappa pum} = 2,179.$

Какой вывод должен сделать исследователь на основе полученного результата?

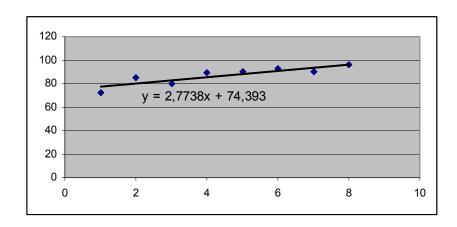
Ответ: все t-статистики по модулю больше критического значения t-статистики, поэтому все коэффициенты являются статистически значимыми, а полученное уравнение регрессии следует признать качественным.

Задание 33. Известны данные о ежегодной прибыли компании (\mathcal{Y} , млн руб.) за последние 8 лет.

t	1	2	3	4	5	6	7	8
\mathcal{Y}	72	85	80	89	90	93	90	96

- а) с помощью пакета Excel найдите уравнение тренда временного ряда, полагая, что он линейный;
- б) на основании уравнения тренда сделайте точечный прогноз прибыли компании на 1 год вперед.

Решение:


а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем линейное уравнение тренда:

$$\hat{y} = 74,393 + 2,7738 t$$
.

б) подставив в уравнение тренда момент времени t = 9, найдем точечный прогноз прибыли компании на 1 год вперед:

$$\hat{y} = 74,393 + 2,7738 \cdot 9 = 99,3572$$
 MJH DVG.

t	1	2	3	4	5	6	7	8
У	72	85	80	89	90	93	90	96

Задание 34. Исследуются 15 предприятий одной и той же отрасли. Для каждого предприятия известны объем товарной продукции (у, млрд. руб.), стоимость основных фондов (x_1 , млрд. руб.), средний возраст оборудования (x_2 , мес.).

		∣ N≚	$\mid \;\; \mathcal{Y} \;$, ооъем III, $\mid \;$	\mathcal{X}_1 , стоимость	x_2 , ср. возраст,
		п/п	млрд. руб.	ОΦ,	мес.
				млрд. руб.	
		1	6,6	3,9	45
		2	5,4	2,2	47
		3	9,9	7,0	27
		4	5,3	2,4	54
		5	9,8	6,0	37
a)	c	6	8,7	4,6	57
		7	9,8	4,3	53
		8	14,8	6,7	38
		9	11,0	4,2	35
		10	7,7	3,9	39
		11	6,5	3,5	40
		12	10,4	3,8	30
		13	5,4	2,8	36
		14	8,6	5,2	35
		15	6,1	3,0	48

помощью пакета Excel найдите коэффициент корреляции между объясняющими переменными \mathcal{X}_1 и \mathcal{X}_2 ;

б) на основании найденного коэффициента корреляции установите наличие или отсутствие мультиколлинеарности между объясняющими переменными.

- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ(массив 1;массив 2). С использованием этой функции найден коэффициент корреляции $r(x_1,x_2) = -0.46$.
- б) такое значения коэффициентов корреляции говорит об отсутствии мультиколлинеарности между объясняющими переменными.

Решение в пакете Excel

У	x1	x2		
6,6	3,9	45		
5,4	2,2	47	r(x1,x2)	-0,46
9,9	7	27		
5,3	2,4	54		
9,8	6	37		
8,7	4,6	57		
9,8	4,3	53		
14,8	6,7	38		
11	4,2	35		
7,7	3,9	39		
6,5	3,5	40		
10,4	3,8	30		
5,4	2,8	36		
8,6	5,2	35		
6,1	3	48		

Задание 35. Исследуются 15 предприятий одной и той же отрасли. Для каждого предприятия известны объем товарной продукции (у, млрд. руб.), стоимость основных фондов (x_1 , млрд. руб.), средний возраст оборудования (x_2 , мес.).

	1		
Nº	${\cal Y}$, объем ТП,	\mathcal{X}_1 , стоимость	x_2 , ср. возраст,
п/п	млрд. руб.	ОΦ,	мес.
		млрд. руб.	
1	6,6	3,9	45
2	5,4	2,2	47
3	9,9	7,0	27
4	5,3	2,4	54
5	9,8	6,0	37
6	8,7	4,6	57
7	9,8	4,3	53
8	14,8	6,7	38
9	11,0	4,2	35
10	7,7	3,9	39
11	6,5	3,5	40
12	10,4	3,8	30
13	5,4	2,8	36
14	8,6	5,2	35
15	6,1	3,0	48

а) спакетанайдите

помощью Excel коэффициенты корреляции между выходной переменной \mathcal{Y} и каждой объясняющей переменной x_1 и x_2 ;

б) какая из объясняющих переменных оказывает более сильное влияние на выходную переменную?

Решение:

- а) в пакете Excel имеется встроенная функция вычисления коэффициента корреляции: КОРРЕЛ(массив 1;массив 2). С использованием этой функции найдены коэффициенты корреляции $r(y,x_1)=0.7926$ и $r(y,x_2)=-0.382$.
- б) так как $|r(y,x_1)| > |r(y,x_2)|$, то объясняющая переменная x_1 оказывает более сильное влияние на выходную переменную y по сравнению объясняющей переменной x_2 .

Решение в пакете Excel

У	x1	x2		
6,6	3,9	45		
5,4	2,2	47		
9,9	7	27		
5,3	2,4	54	r(y,x1)	0,7926
9,8	6	37		
8,7	4,6	57	r(y,x2)	-0,382
9,8	4,3	53		
14,8	6,7	38		
11	4,2	35		
7,7	3,9	39		
6,5	3,5	40		
10,4	3,8	30		
5,4	2,8	36		
8,6	5,2	35		
6,1	3	48		

Задание 36. На сельскохозяйственных предприятиях региона выращивается рожь озимых и яровых сортов. Исследуется зависимость урожайности от количества удобрений и сорта ржи. Какова особенность данного эконометрического исследования?

Ответ: особенность данного эконометрического исследования состоит в наличии одной количественной объясняющей переменной (количество удобрений) и качественного фактора (сорта ржи). Сорт ржи имеет две градации: озимый и яровой и может быть учтен в регрессионной модели с помощью одной фиктивной переменной, которая, как правило, принимает значения 1 или 0.

Задание 37. Проводится эконометрическое исследование с использованием регрессионной модели $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + \varepsilon$. Найдены *t*-статистики коэффициентов a_0, a_1, a_2, a_3 и критическое значение *t*-статистики:

$$t(a_0) = 3,15; \quad t(a_1) = 4,23; \quad t(a_2) = 2,89; \quad t(a_3) = 1,2; \quad t_{\kappa pum} = 2,2.$$

Какой вывод должен сделать исследователь на основе полученного результата?

Ответ: так как $|t(a_3)| < t_{\kappa pum}$, то коэффициент a_3 не является статистически значимым. Поэтому объясняющую переменную x_3 нужно удалить из регрессионной модели и провести новое исследование на основе регрессионной модели $y = a_0 + a_1 x_1 + a_2 x_2 + \varepsilon$.

Задание 38. Проводится эконометрическое исследование с использованием регрессионной модели $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + \varepsilon$. Найдены *t*-статистики коэффициентов a_0 , a_1 , a_2 , a_3 и критическое значение *t*-статистики:

$$t(a_0) = 3,15;$$
 $t(a_1) = -1,23;$ $t(a_2) = -3,39;$ $t(a_3) = 3,2;$ $t_{\kappa pum} = 2,2.$

Какой вывод должен сделать исследователь на основе полученного результата?

Ответ: так как $|t(a_1)| < t_{\kappa pum}$, то коэффициент a_1 не является статистически значимым. Поэтому объясняющую переменную x_1 нужно удалить из регрессионной модели и провести новое исследование на основе регрессионной модели $y = a_0 + a_2 x_2 + a_3 x_3 + \varepsilon$.

Задание 39. Проводится эконометрическое исследование с использованием регрессионной модели $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + \varepsilon$. Найдены *t*-статистики коэффициентов a_0 , a_1 , a_2 , a_3 и критическое значение *t*-статистики:

$$t(a_0) = 3.15$$
; $t(a_1) = -4.23$; $t(a_2) = -3.39$; $t(a_3) = 3.2$; $t_{\kappa pum} = 2.2$.

Какой вывод должен сделать исследователь на основе полученного результата?

Ответ: все коэффициенты являются статистически значимыми, поэтому полученное уравнение регрессии следует признать качественным.

Задание 40. Проводится эконометрическое исследование с использованием регрессионной модели $y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + \varepsilon$. Найдены *t*-статистики коэффициентов a_0 , a_1 , a_2 , a_3 и критическое значение *t*-статистики:

$$t(a_0) = 3.15$$
; $t(a_1) = -4.23$; $t(a_2) = -1.39$; $t(a_3) = 3.2$; $t_{\text{kpum}} = 2.2$.

Какой вывод должен сделать исследователь на основе полученного результата?

Ответ: так как $|t(a_2)| < t_{\kappa pum}$, то коэффициент a_2 не является статистически значимым. Поэтому объясняющую переменную x_2 нужно удалить из регрессионной модели и провести новое исследование на основе регрессионной модели $y = a_0 + a_1 x_1 + a_3 x_3 + \varepsilon$.

Задание 41. Проводится эконометрическое исследование с использованием регрессионной модели $y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + \varepsilon$. Найдены *t*-статистики коэффициентов a_0 , a_1 , a_2 , a_3 и критическое значение *t*-статистики:

$$t(a_0) = 3.15;$$
 $t(a_1) = 0.83;$ $t(a_2) = -1.39;$ $t(a_3) = 3.2;$ $t_{\kappa pum} = 2.2.$

Какой вывод должен сделать исследователь на основе полученного результата?

Ответ: так как $|t(a_1)| < t_{\kappa pum}$ и $|t(a_2)| < t_{\kappa pum}$, то коэффициенты a_1 и a_2 не является статистически значимыми. Среди них выбирается коэффициент с самой маленькой по модулю t-статистикой и соответствующая объясняющая переменная удаляется из регрессионной модели. В данном случае коэффициент a_1 имеет самую маленькую по модулю t-статистику. Поэтому объясняющую переменную x_1 нужно удалить из регрессионной модели и провести новое исследование на основе регрессионной модели $y = a_0 + a_2 x_2 + a_3 x_3 + \varepsilon$.

Задание 42. В результате эконометрического исследования найдено линейное уравнение регрессии $\hat{y} = a_0 + a_1 x = 2,32 - 1,44 x$ и коэффициент детерминации $R^2 = 0,81$. Какое значение примет коэффициент корреляции?

Ответ: для линейной регрессионной зависимости коэффициент корреляции V выражается через коэффициент детерминации следующим образом: $r = \pm \sqrt{R^2}$. Знак (+) имеет место при прямом характере зависимости, знак (-) при обратном. В данном случае

характер зависимости обратный, так как $a_1 = -1,44 < 0$, поэтому коэффициент корреляции r = -0.9.

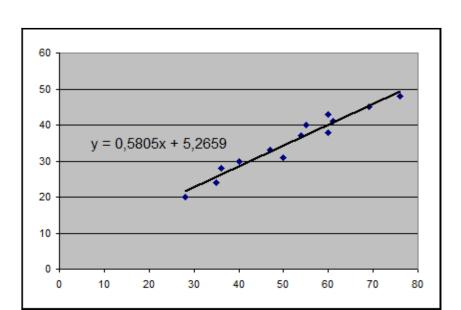
Задание 43. В результате эконометрического исследования найдено линейное уравнение регрессии $\hat{y} = a_0 + a_1 x = 2,32 + 1,44 x$ и коэффициент детерминации $R^2 = 0,81$. Какое значение примет коэффициент корреляции?

Ответ: для линейной регрессионной зависимости коэффициент корреляции r выражается через коэффициент детерминации следующим образом: $r = \pm \sqrt{R^2}$. Знак (+) имеет место при прямом характере зависимости, знак (-) при обратном. В данном случае характер зависимости прямой, так как $a_1 = 1,44 > 0$, поэтому коэффициент корреляции r = 0,9.

Задание 44. Имеются следующие данные об уровне механизации работ (x, %) и производительности труда (y, %) выработка продукции в единицу времени в денежном выражении, тыс. руб./ч) для 13 однотипных предприятий.

y	20	24	28	30	31	33	37	38	40	41	43	45	48
x	28	35	36	40	41	47	54	60	55	61	60	69	76

- а) с помощью пакета Excel найдите линейное уравнение регрессии;
- б) используя найденное уравнение регрессии, найдите среднюю производительность труда при уровне механизации 50 %.


Решение:

а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем линейное уравнение регрессии:

$$\hat{y} = 5,2659 + 0,5805x$$

б) подставив в это уравнение уровень механизации x = 50, найдем среднюю производительность труда: $\hat{y} = 5,2659 + 0,5805 \cdot 50 = 34,29$ тыс. руб./ч.

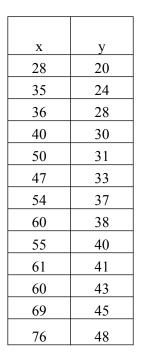
X	у
28	20
35	24
36	28
40	30
50	31
47	33
54	37
60	38
54	37

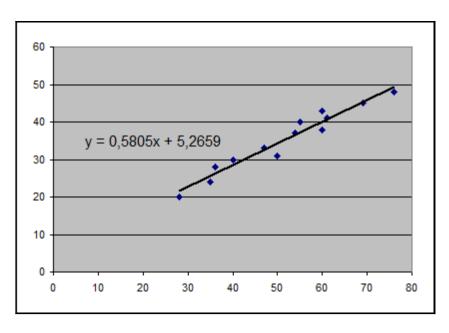
55	40
61	41
60	43
69	45
76	48

Задание 45. Имеются следующие данные об уровне механизации работ (x, %) и производительности труда (y, %) выработка продукции в единицу времени в денежном выражении, тыс. руб./ч) для 13 однотипных предприятий.

		1 / /											
y	20	24	28	30	31	33	37	38	40	41	43	45	48
x	28	35	36	40	41	47	54	60	55	61	60	69	76

- а) с помощью пакета Excel найдите линейное уравнение регрессии $\hat{y} = a_0 + a_1 x$;
- б) объясните экономический смысл коэффициента a_1 .


Решение:


а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем линейное уравнение регрессии:

$$\hat{y} = 5,2659 + 0,5805x$$

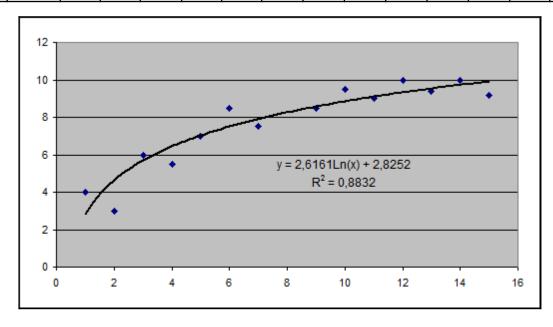
б) коэффициент $a_1 = 0.5805$ показывает увеличение средней производительности труда при увеличении уровня механизации на 1%.

Решение в пакете Excel

Задании 46. Имеются следующие данные о производительности труда (y, выработка продукции в единицу времени в денежном выражении, тыс. руб./ч) в зависимости от стажа работы сотрудника (x, лет).

 E) —	(,	,.												
у	4	3	6	5,5	7	8,5	7,5	8,5	9,5	9	10	9,4	10	9,2
х	1	2	3	4	5	6	7	9	10	11	12	13	14	15

- а) с помощью пакета Excel найдите уравнение регрессии и коэффициент детерминации на основе **логарифмической** модели;
- б) прокомментируйте коэффициент детерминации.


а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем логарифмическое уравнение регрессии:

$$\hat{y} = 2.8252 + 2.6161 \ln x$$

б) логарифмическое уравнение регрессии на 88,32% объясняет зависимость производительности труда от стажа работы сотрудника и на 11,68% от влияния других неучтенных факторов.

Решение в пакете Excel

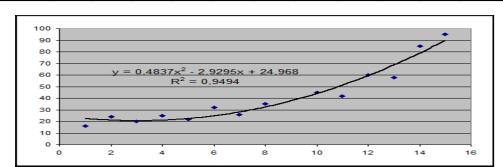
х	1	2	3	4	5	6	7	9	10	11	12	13	14	15
У	4	3	6	5,5	7	8,5	7,5	8,5	9,5	9	10	9,4	10	9,2

Задание 47. Имеются следующие данные о затратах на содержание и ремонт оборудования (y, тыс. руб.) в зависимости от его возраста (x, мес.).

у	16	24	20	25	22	32	26	35	45	42	60	58	85	95
x	1	2	3	4	5	6	7	8	10	11	12	13	14	15

а) с помощью пакета Excel найдите уравнение регрессии на основе полинома 2 порядка и коэффициент детерминации;

б) прокомментируйте коэффициент детерминации.


Решение:

а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем уравнение регрессии на основе полинома 2 порядка:

$$\hat{y} = 24,968 - 2,9295x + 0,4837x^2$$
.

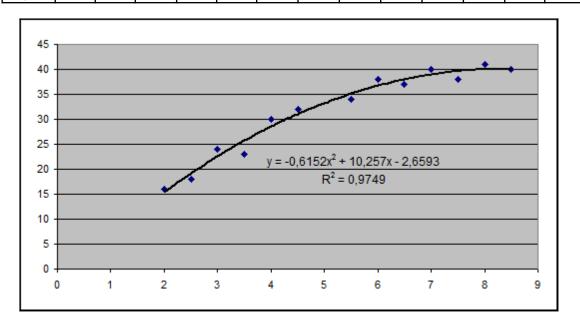
б) уравнение регрессии на основе полинома 2 порядка на 94,94 % объясняет зависимость затрат на содержание и ремонт оборудования от его возраста и на 5,06 % от влияния других неучтенных факторов.

х	1	2	3	4	5	6	7	8	10	11	12	13	14	15
y	16	24	20	25	22	32	26	35	45	42	60	58	85	95

Задание 48. На сельскохозяйственных предприятиях региона выращивается рожь озимых сортов. Исследуется зависимость урожайности $(y, \mathbf{u}/\mathbf{ra})$ от количества удобрений $(x, \mathbf{u}/\mathbf{ra})$. Выборка из 13 предприятий дала следующие результаты.

у	16	18	24	23	30	32	34	38	37	40	38	41	40
x	2,0	2,5	3,0	3,5	4,0	4,5	5,5	6,0	6,5	7,0	7,5	8,0	8,5

- а) с помощью пакета Excel найдите уравнение регрессии на основе полинома 2 порядка и коэффициент детерминации;
- б) прокомментируйте коэффициент детерминации.


Решение:

а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем уравнение регрессии на основе полинома 2 порядка:

$$\hat{y} = 2,6593 + 10,257x - 0,6152x^2$$
.

б) уравнение регрессии на основе полинома 2 порядка на 97,49 % объясняет зависимость урожайности от количества удобрений и на 2,51 % от влияния других неучтенных факторов.

	х	2	2,5	3	3,5	4	4,5	5,5	6	6,5	7	7,5	8	8,5
ſ	у	16	18	24	23	30	32	34	38	37	40	38	41	40

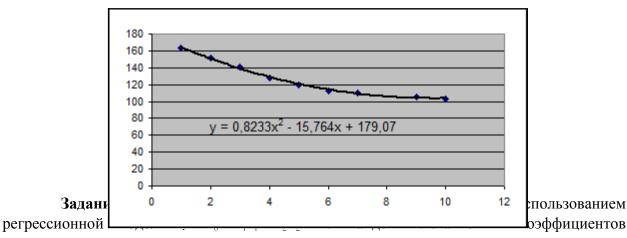
Задание 49. Имеются следующие данные о суммарном потреблении электроэнергии одним из районов области (v, млн кBт*ч) за 10 лет:

t	1	2	3	4	5	6	7	9	10
У	163	152	141	128	120	113	110	105	103

- а) с помощью пакета Excel найдите уравнение тренда на основе полинома 2 порядка;
- б) на основании уравнения тренда сделайте точечный прогноз потребления электроэнергии на 1 год вперед.

Решение:

а) в пакете Excel имеется встроенная функция регрессионного анализа. С использованием этой функции найдем уравнение тренда на основе полинома 2 порядка:


$$\hat{v} = 179.07 - 15.764t + 0.8233t^2$$
.

б) подставив в уравнение тренда момент времени t = 11, найдем точечный прогноз потребления электроэнергии на 1 год вперед:

$$\hat{y} = 179,07 - 15,764 \cdot 11 + 0,8233 \cdot 121 = 105,29$$
 MJH KBT*4.

Решение в пакете Excel

	t	1	2	3	4	5	6	7	9	10
I	v	163	152	141	128	120	113	110	105	103

 a_0, a_1, a_2 и критическое значение *t*-статистики:

$$t(a_0) = 3.15;$$
 $t(a_1) = -0.63;$ $t(a_2) = 1.59;$ $t_{\kappa pum} = 2.179.$

Какой вывод должен сделать исследователь на основе полученного результата?

Ответ: так как $|t(a_1)| < t_{\kappa pum}$ и $|t(a_2)| < t_{\kappa pum}$, то коэффициенты a_1 и a_2 не является статистически значимыми. Среди них выбирается коэффициент с самой маленькой по модулю t-статистикой и соответствующая объясняющая переменная удаляется из регрессионной модели. В данном случае коэффициент a_1 имеет самую маленькую по модулю t-статистику. Поэтому объясняющую переменную x_1 нужно удалить из регрессионной модели и провести новое исследование на основе регрессионной модели $y = a_0 + a_2 x_2 + \varepsilon$.