ПРИЛОЖЕНИЕ МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Радиотехнических устройств»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДИСЦИПЛИНЫ «Программирование радиотехнических задач»

Направление подготовки 11.03.01 Радиотехника

> Уровень подготовки **Бакалавриат**

Квалификация выпускника – бакалавр

Формы обучения – очная, заочная

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля (зачет) и промежуточной аттестации (защита лабораторных работ).

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено». Количество лабораторных работ по каждому модулю определено графиком, утвержденным заведующим кафедрой.

Промежуточный контроль по дисциплине осуществляется проведением зачета. Форма проведения зачета — устный ответ на теоретические вопросы из списка и выполнение заданий в форме составления и отладки программного кода (рекомендованное количество — 1 теоретический вопрос и 1 практическое задание).

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Шкала сформированности компетенций по дисциплине оценивается при промежуточной аттестации в форме «зачтено-не зачтено»:

Оценка «зачтено» выставляется студенту, который прочно усвоил предусмотренный программный материал, правильно и аргументировано ответил на вопросы, показал систематизированные знания принципов поиска, хранения, обработки, анализа и представления информации, решил практическую задачу по составлению корректно работающего программного кода.

Оценка «не зачтено» выставляется студенту, который в ответах на вопросы допустил существенные ошибки, не сумел ответить на дополнительные вопросы, предложенные преподавателем, или не сформулировал аргументированный ответ в грамотной форме, не решил практическую задачу по составлению корректно работающего программного кода.

Оценка «зачтено» по лабораторной работе выставляется студенту, составившему и отладившему программный код в соответствии с заданием, приведенным в методическом указании, предъявившему безошибочно работающую программу преподавателю и ответившему на дополнительные вопросы.

Оценка «не зачтено» по лабораторной работе выставляется студенту, который при составлении программного кода допустил существенные ошибки, не сумел осуществить отладку программы и ответить на дополнительные вопросы, предложенные преподавателем в случае диспута, когда программа работоспособна, но при работе выдает результат, не соответствующий ожидаемому согласно методическому указанию.

Типовые контрольные задания или иные материалы

Основные вопросы к зачету

- 1. Основные сведения о Matlab. Командная строка, история команд, рабочая среда с переменными. Запуск Simulink и GUIDE.
- 2. Типы данных в Matlab. Функции преобразования типов данных.
- 3. Решение систем линейных алгебраических уравнений с помощью Matlab. Переопределенная система, решение наименьших квадратов и оператор псевдоинверсии.
- 4. Основные операторы для работы с матрицами в Matlab: транспонирование, обращение и псевдообращение, конкатенация, манипуляция элементами, строками и столбцами. Генерация типовых матриц (нулевая, единичная, единично-диагональная).
- 5. Построение графиков. Вызов фигуры, расположение графиков на фигуре с помощью оператора subplot. Построение осциллограммы и спектрограммы временного процесса. Фильтрация временного процесса.
- 6. Генерация случайных чисел, векторов и матриц. Построение гистограмм и круговых диаграмм, а также диаграмм рассеяния.
- 7. Визуализация матричных данных с помощью трехмерных поверхностей, каркасных и контурных графиков. Задание сетки командой meshgrid.
- 8. Визуализация матричных данных командами image и imagesc. Управление палитрой и осями. Открытие графического файла, двумерная интерполяция.
- 9. Ввод из командной строки, форматированный вывод в командную строку. Интерфейсный ввод данных командами menu и inputdlg, ввод координат с графика командой ginput. Интерфейсный вывод данных, вывод текста на график.
- 10. Управляющие структуры. Условный и безусловный циклы. Оператор условия if-else. Оператор ветвления switch.
- 11. Функции пользователя. Файл-функция, входные и выходные переменные. Глобальные переменные.
- 12. Среда GUIDE. Вызов и работа с конструктором. Основные элементы.
- 13. Среда GUIDE. Инспектор свойств. Работа с атрибутами объектов с помощью операторов get и set.
- 14. Среда GUIDE. Система указателей handles. Обработка событий, callback-функции.

Дополнительные вопросы к зачету

- 1.1 Назначение и содержание окна команд, окна истории команд, окна рабочей области (workspace) в Matlab. Вызов редактора программы и работа в нем. Особенности определения переменных, очистка рабочей области.
- 1.2 Как задаются векторы ранжированных чисел в Matlab? Приведите примеры команд для задания в виде вектора ряда возрастающих чисел, ряда убывающих чисел, ряда с шагом.
- 1.3 Как задаются матрицы в Matlab? Роль пунктуационных символов (точки, запятой, точки с запятой) в формировании и выводе в командную строку векторов и матриц.
- 1.4 Опишите синтаксис основных операций с матрицами: умножение, поэлементное умножение, транспонирование, комплексно-сопряженное транспонирование, инверсия. Каковы распространенные ошибки при выполнении данных операций с матрицами?

- 1.5 Способы решения систем линейных алгебраических уравнений в Matlab. Требования к матрице системы (размерность, ранг и т.д.).
- 1.6 Манипуляции с фигурами в Matlab. Создание фигуры, активация фигуры, активация подграфика, закрытие фигуры. Управление масштабом, сеткой и надписями. Команды для рисовки простейших графиков, требования к их аргументам.
- 1.7 Определение минимальных и максимальных элементов векторов и матриц, а также их позиций. Определение среднего и среднеквадратичного значений вектора и матрицы.
- 1.8 Матричное вычисление математических функций в Matlab. Гармонические и экспоненциальные функции. Приведите примеры генерации и визуализации дискретных колебательных процессов.
- 1.9 Логические операции и операции отношения с векторами и матрицами. Поэлементное сравнение. Смысл операторов all() и any().
- 1.10 Генерация специальных матриц в Matlab: нулевой, единичной, диагональной. Некоторые другие специальные матрицы (магический квадрат, матрица Тёплица, матрица Адамара).
- 1.11 Как задаются комплексные числа в Matlab? Операции с комплексными векторами и матрицами: сопряжение, выделение действительной и мнимой частей, модуля и фазы. Приведите пример составления комплексной матрицы из заданных матриц действительной и мнимой частей, из матриц модуля и фазы.
- 1.12 Операторы разложения матриц: QR, Холецкого, сингулярное, на собственные числа и собственные векторы. Требования к матрицам-аргументам.
- 2.1 Способы построения графиков с помощью команды plot. Построение нескольких графиков на одной системе осей, построение форматированных графиков. Столбчатый и игольчатый графики. Построение в полулогарифмическом и логарифмическом масштабе.
- 2.2 Визуализация массивов статистических данных с помощью гистограмм. Управление числом столбцов и интервалами гистограммы. Компромисс между разрешением и качеством усреднения гистограммы. Отличие команд hist и histc.
- 2.3 Визуализация массивов статистических данных с помощью круговых диаграмм. Построение двумерной и трехмерной диаграммы, формирование задающего вектора из статистических данных. Задание отсеченных секторов.
- 2.4 Визуализация массивов статистических данных с помощью диаграмм рассеяния. Построение двумерной и трехмерной диаграммы. Управление видом, размером и цветом маркеров, ракурсом осей.
- 2.5 Принцип работы команды meshgrid. Создание дискретной функции двух переменных. Примеры визуализации функции.
- 2.6 Принцип работы команды axis. Задание пользовательского масштаба графиков, копирование масштаба одного графика на другой, автомасштабирование.
- 2.7 Включение и выключение сетки, подпись осей и названия графика. Легенда и текст в заданной точке графика, текст по щелчку мыши на графике. Изменение масштаба графика.
- 2.8 Что представляет из себя палитра для цветовой визуализации массивов данных? Пользовательское задание палитры, задание одного из предустановленных вариантов. Вывод цветовой шкалы на график.
- 2.9 Визуализация функции двух переменных как плоского цветного изображения, плоского контурного изображения изолиний. Задание палитры, вывод цветовой шкалы. Отличие команд image и imagesc.
- 2.10 Визуализация функции двух переменных как сетчатой поверхности, сглаженной поверхности с различным шейдером, поверхности с проекцией изолиний, графика срезов. Задание палитры, вывод цветовой шкалы. Управление ракурсом осей и освещением.
- 2.11 Загрузка и выведение на график изображения из файла. Формат загруженного массива данных для цветного и черно-белого изображения. Простейшая обработка: изменение разрешения с различным типом интерполяции, инверсия цвета, поворот и отражение картинки.

- 2.12 Загрузка и выведение на график изображения из файла. Формат загруженного массива данных для цветного и черно-белого изображения. Простейшая обработка: двумерная фильтрация, изменение яркости и контраста, отдельная коррекция RGB каналов цветной картинки.
- 3.1 Организация цикла for, задание ранжированной переменной счетчика. Использование матрицы и многомерного массива в качестве переменной счетчика.
- 3.2 Организация условного цикла while. Запись условия непосредственно после оператора while, а также в виде логической переменной.
- 3.3 Организация условной конструкции if. Запись условия непосредственно после оператора if, а также в виде логической переменной. Назначение и использование альтернативных ветвей elseif и else.
- 3.4 Ветвление switch. Синтаксис условий после оператора case. Логика работы конструкции, когда условия являются векторами, матрицами, ячейками, строками. Логика работы при истинном ответе на нескольких ветвях.
- 3.5 Конструкция try...catch. Возможные области применения. Для чего нужна системная переменная lasterr?
- 3.6 Использование операторов break и continue для управления циклами.
- 3.7 Открытие файла для считывания или записи. Корректное закрытие файла после данных операций. Параллельная работа с несколькими файлами.
- 3.8 Запись данных в файл с помощью команды fwrite. Задание точности представления данных в файле. Использование счетчика.
- 3.9 Считывание данных из файла с помощью команды fread. Задание размера загружаемых данных и точности их представления.
- 3.10 Как организовать корректное сохранение и считывание из файла динамических массивов?
- 3.11 Использование операторов ginput и gtext при работе с изображениями.
- 3.12 Простейшие элементы пользовательского интерфейса: команды msgbox, errordlg, inputdlg, menu. Назначение, варианты синтаксиса.
- 4.1 Назначение и задание пользовательских функций в MatLab. Входные и выходные аргументы. Вызов функции с полным и неполным перечнем аргументов.
- 4.2 Локальные и глобальные переменные. Определение глобальных переменных. Обмен между функциями и модулями с помощью глобальных переменных.
- 4.3 Обмен между программой и функцией с помощью массивов varargin и varargout. Зачем нужны переменные nargin и nargout?
- 4.4 Где может располагаться файл с функцией? Порядок поиска функции MatLab при исполнении программы. Как добавить в список поиска дополнительные папки?
- 4.5 Задание и особенности дочерних и приватных функций. В каких ситуациях их целесообразно применять?
- 4.6 Назначение и вызов среды GUIDE. Параллельная работа с конструктором интерфейса и редактором программ. Объекты конструктора, их связь с программным кодом. Можно ли создавать графический интерфейс, не прибегая к помощи конструктора?
- 4.7 Инспектор свойств объектов. Указатели объектов и их свойств. Список указателей handles. Чтение и задание значений свойств операторами get и set. Указатель hObject.
- 4.8 Обработка событий при работе с графическим интерфейсом. Функции обратного вызова (callback). Синхронизация свойств нескольких элементов на примере численного значения слайдера и редактируемого поля.
- 4.9 Зачем нужна открывающая функция (OpeningFcn)? Как создать закрывающую функцию (DeleteFcn)?
- 4.10 Как задать тег элемента, всплывающую подсказку? Как задать координаты элемента и единицы их измерения, используя для этого конструктор, либо инспектор свойств, либо программно? Относительно чего координаты отсчитываются?

- 4.11 Объект «Панель». Логика работы радиокнопок и «залипающих» кнопок, размещенных на панели. Отсчет координат, перемещение панели и объектов на ней.
- 4.12 Как программно добавить объект в интерфейс, а указатель на него в список handles? Как программно сделать объект дочерним по отношению к панели?

Типовые задания к зачету

- Конкретные значения параметров задания уточняются преподавателем индивидуально для каждого студента.
- По усмотрению преподавателя, задания выполняются в виде последовательности команд в командной строке или как текст программы в редакторе.
- При выполнении задания студент может пользоваться справочником, содержащим список, синтаксис и краткое описание операторов и команд языка Matlab, а также методическими указаниями к лабораторным работам.
- 1. Решить систему линейных алгебраических уравнений (число уравнений и неизвестных -3 или 4). Проверить правильность решения.
- 2. Решить переопределенную систему линейных алгебраических уравнений (число уравнений 4, неизвестных 3) методом наименьших квадратов.
- 3. Задать в виде вектора колебание с амплитудной модуляцией глубиной 30-70%, частотой огибающей 10-20 МГц, частотой заполнения 100-200 МГц, на временном отрезке от 0 до 255 нс с периодом дискретизации 1 нс. Построить осциллограмму и спектрограмму колебания.
- 4. Задаться матрицей 3х4 с комплексными элементами. Вычислить ее квадратичную форму, которую разложить на собственные векторы и собственные числа. Показать унитарность матриц собственных векторов. Показать, что произведение собственных чисел равно определителю исходной квадратичной формы.
- 5. Задать вектор из 32 случайных бит. Преобразовать вектор в модулирующий сигнал из 256 элементов (32 двуполярных символа, каждый символ по 8 одинаковых отсчетов). Задать вектор несущей на временном отрезке от 0 до 255 нс с периодом дискретизации 1 нс, периодом несущей 8 отсчетов. Произвести модуляцию BPSK несущей ранее полученным модулирующим сигналом. Построить осциллограмму и спектрограмму BPSK сигнала.
- 6. Задать вектор из 100000 случайных чисел с равномерным законом распределения (нижняя граница задана от -3 до -1, верхняя от 4 до 6). Построить гистограмму данной выборки (число столбцов от 12 до 20). Построить круговую диаграмму, отображающую соотношение положительных и отрицательных чисел в выборке.
- 7. Задать вектор из 100000 случайных чисел с гауссовским законом распределения (среднее значение задано от -3 до -1, среднеквадратичное отклонение от 2 до 6). Построить гистограмму данной выборки (число столбцов от 12 до 20). Построить круговую диаграмму, отображающую соотношение положительных и отрицательных чисел в выборке.
- 8. Сгенерировать с помощью команды meshgrid координатную сетку 400x400 элементов, построить с ее помощью матрицу, реализующую функцию $w(x,y) = \sin(2\pi ax) + \cos(2\pi by)$, где х и у номера элементов матрицы, коэффициенты а и в заданы в пределах от 0,01 до 0,1. Визуализировать матрицу как двумерное изображение, сохранить изображение в виде графического файла. Также визуализировать матрицу как трехмерную поверхность.
- 9. Открыть изображение из графического файла, указанного преподавателем, вывести его на экран. Изменить разрешение и границы изображения с помощью команды трехмерной интерполяции. Сохранить обработанное изображение под новым именем. С помощью команды ginput ввести координаты 10 точек на изображении. Вывести в

командную строку данные координаты, а также значения компонент яркости соответствующих пикселей изображения.

10. Используя оператор еуе и конкатенацию, сгенерировать порождающую матрицу кода Хэмминга (7,4):

Задать вектор из 32 случайных бит. Преобразовать вектор в матрицу данных 8х4, используя оператор reshape. Получить матрицу кодированных данных путем умножения исходной матрицы на порождающую и приведения результата по модулю 2 командой mod. Проверить отсутствие ошибок в коде путем умножения матрицы кодированных данных на проверочную и приведения результата по модулю 2 командой mod:

При отсутствии ошибок результат проверки будет нулевой матрицей. Далее изменить в матрице кодированных данных по одному конкретному биту на противоположный в трех конкретных строках. Повторить проверку и удостовериться, что ненулевые комбинации возникают в затронутых строках, а номера строк проверочной матрицы, в которых встречаются данные комбинации, совпадают с номерами измененных бит.

- 11. Задать матрицу Адамара 1 порядка [1 1; 1 -1]. Используя блочное переприсваивание в безусловном цикле for, сгенерировать матрицу Адамара порядка N (задано в пределах от 3 до 6). Проверить правильность, сгенерировав такую же матрицу оператором hadamard. Убедиться, что квадратичная форма матрицы Адамара равна единичной матрице, умноженной на 2^N. Визуализировать полученное семейство функций Уолша (строки или столбцы матрицы Адамара) в виде ступенчатого графика с помощью команды stairs, также используя оператор subplot для разнесения графиков на фигуре.
- 12. Создать нулевой вектор из 1000 элементов. С помощью условного цикла while произвести генерацию гауссовского шума с нулевым средним и среднеквадратичным отклонением σ (задано в пределах от 3 до 10). Условие остановки цикла превышение модулем мгновенного значения процесса величины 3σ или достижение конца вектора. Построить осциллограмму процесса (только сгенерированную часть вектора). Вывести в командной строке длительность процесса в отсчетах.
- 13. Сгенерировать вектор из 32 случайных величин по выбору пользователя: а) равномерно распределенных от 0 до 1, б) нормально распределенных со среднеквадратичным отклонением σ, в) равновероятная битовая последовательность. Выбор варианта должен осуществляться стандартным кнопочным меню. Ветвление в зависимости от выбора организовать конструкцией switch-case. В случае выбора нормального распределения организовать ввод величины σ с помощью стандартного окна ввода значений. Предусмотреть, чтобы σ принадлежало диапазону от 1 до 10, в противном случае выводить сообщение об ошибке в стандартном окне и запрашивать повторный ввод. Построить осциллограмму и гистограмму полученного процесса.
- 14. Задать вектор из 1000 случайных чисел со стандартным гауссовским законом распределения. Построить осциллограмму. Написать отдельный файл-функцию, реализующий фильтр нижних частот 1 порядка, в качестве входного и выходного параметров указать соответствующие векторы процессов. Фактор фильтрации определить как глобальную переменную и присвоить значение в пределах от -0.1 до -0.999.

Отфильтровать процесс, используя данную функцию, и отдельно построить его осциллограмму. Вызвать среду GUIDE, создать в ней простой интерфейс пользователя, содержащий кнопку «Пуск» и окошко для ввода фактора фильтрации, а также интегрированные графики неотфильтрованного и отфильтрованного процессов. В теле callback-функции кнопки «Пуск» разместить программный код для генерации процесса, считывания фактора фильтрации оператором get, фильтрации с использованием функции пользователя и выведении графиков процессов.

Перечень лабораторных работ и вопросов для контроля

№ п/п	№ раздела дисциплины	Наименование лабораторной работы
1	1.1, 1.2	Простые вычисления и построения в MatLab
2	1.3, 1.4	Графические средства MatLab
3	1.5, 1.6	Элементы управления и программирования MatLab
4	1.7, 1.8	Функции пользователя в MatLab

<u>№</u> работы	Название лабораторной работы и вопросы для контроля	Шифр
1	 Простые вычисления и построения в MatLab Операторы, используемые для задания определенных и случайных векторов и матриц. Оператор plot для построения данных из вектора. Построение нескольких графиков на одном полотне, на разных полотнах одной фигуры. Решение систем линейных алгебраических уравнений. Основные операторы для работы с матрицами: транспонирование, инверсия, комплексное сопряжение. Вычисление действительной и мнимой частей, модуля и фазы. Конкатенация, поддиапазон, изъятие столбцов и строк. Пустая матрица. Логические операторы, операторы сравнения. Поэлементное сравнение векторов и матриц. Нахождение максимальных и минимальных элементов векторов и матриц. Командная строка, история команд, редактор программ. Запуск и отладка программы. Анализ ошибок по сообщению в командной строке. Анализ ошибок по сообщению в командной строке. Что означают и как исправляются ошибки «Маtrix must be square», «Inner matrix dimensions must agree»? Анализ ошибок по сообщению в командной строке. Что означают и как исправляются ошибки «Тhe input character is not valid in MATLAB statements or expressions», «Unbalanced or unexpected parenthesis or bracket»? 	5549
2	 Графические средства MatLab Визуализация данных из вектора командами plot, bar, stem, plot3, bar3, stem3. Генерация векторов и матриц случайных чисел. Визуализация 	5549

	случайных выборок в виде осциллограмм, гистограмм, диаграмм рассеяния. Выведение на график поддиапазона из матрицы или вектора. Кастомизация гистограммы. 3. Создание круговой диаграммы, задание векторов границ и отсеченных секторов. 4. Создание двумерной сетки с помощью команды meshgrid и задание по ней функции двух переменных. Визуализация функции двумерным полутоновым изображением, в виде карты линий уровня. Задание цветовой палитры 5. Создание двумерной сетки с помощью команды meshgrid и задание по ней функции двух переменных. Визуализация функции в виде каркасных и поверхностных графиков.	
	6. Открытие файла с изображением, формат соответствующей матрицы. Построение изображения, различие между командами	
	image и imagesc. Задание границ осей пользователем, построение части изображения.	
	7. Применение команд преобразования формата для корректной обработки изображения.	
	8. Применение указателя на графический объект и команды drawnow для быстрого обновления графика по новым данным.	
3	Элементы управления и программирования MatLab	
	 Безусловный цикл. Задание шага пользователем. Вложенные циклы. Досрочный выход из цикла. Условный цикл. Корректное задание начальных значений. Досрочный выход из цикла. Условие if-else-elseif. Задание условия непосредственно и в виде логической переменной. Логические операторы и операторы сравнения. Ветвление с помощью команды switch-case. Работа по нескольким условиям внутри ветви. Что произойдет, если одинаковое условие прописано в нескольких ветвях? Элементы интерфейса пользователя: кнопочное меню, окно строк для ввода, окно вывода, окно сообщения об ошибке. Ввод координат точек с графика с помощью команды ginput. Как проявляет себя нажатие различных клавиш мыши и клавиатуры при вводе? Работа с файлами данных. Объявление, открытие для чтения и записи, закрытие. Указание формата данных. Как организовать корректное чтение из файла сохраненных в нем ранее матриц произвольного разрешения? Форматированный вывод данных. Операторы обработки ошибок. Отключение предупреждений. 	5549
4	Функции пользователя в MatLab 1. Порядок создания функции. Файл-функция. Входные и выходные переменные. Глобальные и локальные переменные. Добавление рабочих папок с функциями. 2. Обращение функции к другим функциям. Вложенные функции. Глобальные и локальные переменные. 3. Среда GUIDE. Основные элементы, вызов и изменение их атрибутов. Инспектор свойств. Тэг элемента.	5549

- 4. Функции вызова (callback) при событиях, связанных о элементами GUIDE. Система указателей handles.
- 5. Как синхронизировать атрибуты различных элементов GUIDE (на примере положения движка и численного значения в окошке)?
- 6. Как предотвратить некорректный ввод значений через окошко в среде GUIDE?
- 7. Как реализовать инструкции, которые должны исполняться перед открытием основного окна программы, а также при его закрытии?
- 8. Как осуществлять построения на нескольких графиках, интегрированных в окно программы?

График выполнения лабораторных работ размещен в лаборатории.

Составил доцент кафедры РТУ к.т.н.

А.В. Ксендзов