ПРИЛОЖЕНИЕ

МИНИСТЕРСТВОИТ НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» им. В.Ф. УТКИНА

ФАКУЛЬТЕТ ЭЛЕКТРОНИКИ КАФЕДРА МИКРО- и НАНОЭЛЕКТРОНИКИ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.03 «ФИЗИКА ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ»

Специальность

03.03.01 «Прикладные математика и физика»

Специализация

Электроника, квантовые системы и нанотехнологии

Уровень высшего образования Бакалавриат

Квалификация выпускника – бакалавр

Форма обучения – очная

Рязань 2025 г.

Оценочные материалы предназначены для контроля знаний обучающихся по дисциплине «Физика полупроводниковых приборов» и представляют собой фонд оценочных средств, образованный совокупностью учебно-методических материалов (контрольных заданий для практических занятий), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций обучающихся целям и требований основной образовательной программы в ходе проведения учебного процесса.

Основная задача — обеспечить оценку уровня общепрофессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и проведения, в случае необходимости, индивидуальных консультаций. К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на практических занятиях и лабораторных работах.

Промежуточная аттестация студентов по данной дисциплине проводится на основании результатов выполнения заданий на практические занятия и лабораторные работы. Количество практических занятий и лабораторных работ по дисциплине определено утвержденным учебным графиком.

По итогам курса студенты сдают в конце 6-го семестра обучения теоретический зачет, а в конце 7-го - экзамен. Форма проведения зачета и экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый должен составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки, схемы и т.п.

1. Паспорт фонда оценочных средств по дисциплине (очная форма обучения)

No	Контролируемые	Код	Наименование
п/п	разделы дисциплины	контролируемой	оценочного
		компетенции	средства
	M	одуль 1	
1	Введение	ПК-1.1,	Практическое занятие № 1,
		ПК-2.1,	зачет
		ПК-2.2	
2	Барьерные полупроводниковые	ПК-1.1,	Практическое занятие № 2,
	структуры	ПК-2.1,	зачет
		ПК-2.2	
3	Полупроводниковые диоды	ПК-1.1,	Практическое занятие № 3,
		ПК-2.1,	зачет
		ПК-2.2	

4	Биполярные транзисторы	ПК-1.1,	Практическое занятие № 4,
		ПК-2.1,	зачет
		ПК-2.2	
	Me	одуль 2	
9	Полевые транзисторы	ПК-1.1,	Практическое занятие № 5
		ПК-2.1,	зачет
		ПК-2.2	
10	Полупроводниковые приборы с вольт-	ПК-1.1,	Практическое занятие № 6,
	амперной характеристикой S-типа	ПК-2.1,	зачет
		ПК-2.2	
11	Приборы полупроводниковой	ПК-1.1,	Практическое занятие № 7,
	оптоэлектроники	ПК-2.1,	зачет
	-	ПК-2.2	
12	Полупроводниковые приборы в	ПК-1.1,	Практическое занятие № 8,
	интегральном исполнении	ПК-2.1,	зачет
		ПК-2.2	

Критерии оценивания компетенций (результатов)

- 1. Уровень усвоения материала, предусмотренного программой.
- 2. Умение анализировать материал, устанавливать причинно-следственные связи.
- 3. Качество ответов на вопросы: логичность, убежденность, общая эрудиция.
- 4. Использование дополнительной литературы при подготовке ответов.
- 5. Умение вести поиск необходимой информации в сети Интернет.
- 6. Инициативность, умение работать в коллективе.
- 7. Качество оформления отчетной документации.

При аттестации результатов обучения по дисциплине в виде теоретического зачета с оценкой или экзамена используются следующие критерии.

«Отлично»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов); полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

«Хорошо»:

достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов); последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов.

«Удовлетворительно»:

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов); понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Неудовлетворительно»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

2 Примеры контрольных вопросов

Модуль 1

Вопросы к практическим занятиям

Пр	Практическое занятие № 1 «Особенности построения функциональных и физико-	
TOI	топологических моделей полупроводниковых приборов, классификация моделей	
пол	пупроводниковых приборов»	
1	Алгоритмы проектирования полупроводникового прибора	
2	Функциональная и технологическая модель полупроводникового прибора	
3	Особенности построения функциональной и технологической модели	
	полупроводникового прибора	
4	Математические модели полупроводникового прибора	
5	Тепловая модель полупроводникового прибора	
Пр	актическое занятие № 2 «Модели полупроводниковых диодов. Статическая и	
диі	намическая модели диода, определение параметров модели диода»	
1	Статические модели полупроводниковых диодов различного функционального	
	назначения	
2	Динамические модели полупроводниковых диодов различного функционального	
	назначения	
3	Основные параметры моделей полупроводниковых диодов различного функционального	
	назначения	
_	актическое занятие № 3 «Модели биполярных транзисторов. Статические модели.	
Ди	намическая модель и динамическая передаточная модели Эберса-Молла»	
1	Анализ статических моделей биполярного транзистора и основных параметров моделей	
2	Анализ динамической модели Эберса-Молла биполярного транзистора и основных	
	параметров модели	
3	Анализ динамической передаточной модели Эберса-Молла биполярного транзистора и	
	основных параметров модели	
	Практическое занятие № 4 «Модели биполярных транзисторов. Динамическая	
зар	зарядоуправляемая модель. Динамические модели малого сигнала»	
1	Анализ параметров биполярного транзистора как четырехполюсника	
2	Анализ динамических зарядоуправляемых моделей биполярного транзистора и	
	основных параметров моделей	
3	Анализ динамической модели малого сигнала биполярного транзистора и основных	
	параметров модели	

Вопросы к теоретическому зачету

Тема 1 «Введение»		
1.1	Электронные процессы в полупроводниках.	
1.2	Неравновесные электронные процессы: инжекция носителей заряда в полупроводник	
1.3	Неравновесные электронные процессы: диффузионный и дрейфовый токи	
1.4	Неравновесные электронные процессы: генерационно-рекомбинационные процессы	
1.5	Неравновесные носители в электрическом поле, токи, ограниченные пространственным	
	зарядом	
1.6	Эффекты в полупроводниках при высоком уровне легирования и большой концентрации	
	носителей заряда	
Тема 2 «Барьерные полупроводниковые структуры»		
2.1	Контакты металл - полупроводник: барьер Шотки, барьер Мотта, дебаевская длина	
	экранирования	
2.2	Контакты металл - полупроводник:невыпрямляющие (омические) контакты (туннельные	
	контакты, омические контакты Шотки)	

2.3	МДП-структуры: приповерхностные состояния	
2.4	МДП-структуры: заряд в области пространственного заряда	
2.5	МДП-структуры: зонная диаграмма приповерхностной области полупроводника в	
	равновесных условиях	
2.6	Вольт-фарадные характеристики структур МДП	
2.7	Электронно-дырочные (р-n-) переходы. Контактная разность потенциалов	
2.8	Распределение свободных носителей в p-n-переходе	
2.9	Поле и потенциал в р-п-переходе	
2.10	Барьерная и диффузионная емкости р-п-перехода	
2.11	Вольтамперная характеристика р-п-перехода	
2.12	Пробой р-п-перехода	
2.13	Потенциальные барьеры на границах раздела различных полупроводников:	
	гетеропереходы	
2.14	Зонные диаграммы гетеропереходов	
Тема	3 «Полупроводниковые диоды»	
3.1	Общие сведения о полупроводниковых диодах . ВАХ диода	
3.2	Выпрямление в диоде. Эквивалентная схема диода	
3.3	Влияние генерации, рекомбинации и объемного сопротивления базы на	
	характеристики реальных диодов	
3.4	Стабилитроны. Приборные характеристики стабилитронов	
3.5	Параметрические диоды и варикапы	
3.6	Переходные процессы в полупроводниковых диодах	
3.7	Импульсные диоды: диоды с накоплением заряда	
3.8	Импульсные диоды: диоды Шоттки	
3.9	Импульсные диоды: p-i-n- диоды	
3.10	Диоды для усиления и генерации СВЧ-сигнала: туннельные и обращенные диоды	
3.11	Диоды для усиления и генерации СВЧ-сигнала: лавинно-пролетные диоды	
3.12	Диоды для усиления и генерации СВЧ-сигнала: диоды Ганна	
Тема	ма 4 «Биполярные транзисторы»	
4.1	Принцип работы и классификация биполярных транзисторов	
4.2	Основные физические процессы в биполярных транзисторах	
4.3	Вольт-амперные характеристики биполярного транзистора	
4.4	Системы параметров биполярных транзисторов.	
4.5	Схемы включения и режимы работы биполярных транзисторов	
4.6	Статические и динамические характеристики транзистора.	
4.7	Переходные процессы в транзисторе.	
4.8	Транзисторные эффекты: эффект Эрли	
4.9	Транзисторные эффекты: эффект Эрли, Кирка	
4.10		
4.11	Транзисторные эффекты: оттеснения тока эмиттера	
4.12		
4.13		
4.14	Биполярные транзисторы с гетеропереходами	

Модуль 2

Вопросы к практическим занятиям

zonpotza a punta attana summana		
Практическое занятие № 5 «Модели полевых транзисторов. Статические модели		
МДП-транзистора. Динамические модели большого и малого сигнала»		
1	Анализ статических моделей полевого транзистора и основных параметров моделей	
2	Анализ линамической молели большого сигнала полевого транзистора и основных	

	параметров модели		
3	Анализ динамической модели малого сигнала полевого транзистора и основных		
	параметров модел		
4	Анализ динамической модели мощного полевого транзистора и основных параметров		
	модели		
Пр	Практическое занятие № 6 «Модели тиристоров. Статические модели. Динамическая		
дву	ухступенчатая модель тиристора. Динамическая трехэлектродная модель		
_	ристора»		
1	Анализ статических моделей тиристоров и основных параметров моделей		
2	Анализ динамической двухступенчатой модели тиристора и основных параметров		
	модели		
3	Анализ динамической трехэлектродной модели тиристора и основных параметров		
	модели		
_	актическое занятие № 7 «Тепловые процессы в полупроводниковых приборах.		
	пловые модели и классификация тепловых режимов полупроводниковых		
пр	иборов»		
1	Тепловые процессы в полупроводниковых приборах		
2	Классификация и основные особенности тепловых режимов работы полупроводниковых		
	приборов		
3	Анализ тепловых моделей полупроводниковых приборов и основных параметров		
	моделей		
_	актическое занятие № 8 «Влияние внешних воздействий на параметры		
ПО.	пупроводниковых приборов»		
1	Физические явления в полупроводниковых структурах под действием температуры		
2	Физические явления в полупроводниковых структурах под действием давления		
	(деформации)		
3	Физические явления в полупроводниковых структурах под действием внешних		
	электромагнитных полей		
4	Влияние температуры на параметры полупроводниковых приборов		
5	Влияние давления (деформации) на параметры полупроводниковых приборов		
6	Влияние электромагнитных полей и других внешних воздействий на параметры		
	полупроводниковых приборов		

Вопросы к экзамену

Тема	Тема 5 «Полевые транзисторы»		
5.1	Типы и устройство полевых транзисторов		
5.2	Полевые транзисторы с управляющим р-п-переходом в качестве затвора: принципы		
	работы, конструктивные особенности, параметры и режимы работы		
5.3	СВЧ полевые транзисторы с барьером Шоттки в качестве затвора: принципы работы,		
	конструктивные особенности, параметры и режимы работы		
5.4	Полевые транзисторы с изолированным затвором - МДП-транзисторы: принципы работы,		
	конструкции, режимы работы.		
5.5	Эквивалентная схема и быстродействие МДП-транзистора		
5.6	Топологические реализации МДП-транзисторов		
5.7	Размерные и другие эффекты в МДП транзисторах		
5.8	Типы МДП-транзисторов для репрограммируемых элементов памяти		
5.9	Гетероструктурные полевые транзисторы.		
5.10	Тонкопленочные полевые транзисторы.		
5.11	Мощные МДП-транзисторы.		
5.12	Полевые приборы с зарядовой связью.		
Тема 6 «Полупроводниковые приборы с вольт-амперной характеристикой S-типа»			

6.1	Общая характеристика приборов с отрицательным сопротивлением (проводимостью)	
6.2	S-диод	
6.3	Однопереходный транзистор	
6.4	Лавинный транзистор	
6.5		
6.6	Модуляционный транзистор	
6.7	Динистор и тиристор	
6.8	Симистор	
Тема	7 «Приборы полупроводниковой оптоэлектроники»	
7.1	Параметры фотоприемников	
7.2	Полупроводниковые фоторезисторы	
7.3	Полупроводниковые фотодиоды	
7.4	Биполярные фототранзисторы	
7.5	Полевые фототранзисторы	
7.6	Солнечные элементы	
7.7	Полупроводниковые источники оптического излучения: светоизлучающие диоды	
7.8	Полупроводниковые источники оптического излучения: инжекционные лазеры	
Тема	8 «Полупроводниковые приборы в интегральном исполнении»	
8.1	Особенности конструирования и расчета полупроводниковых приборов в	
	интегральном исполнении	
8.2	Примеры конструкции и топологии интегральных резисторов	
8.3	Примеры конструкции и топологии интегральных диодов	
8.4	Примеры конструкции и топологии интегральных биполярных транзисторов	
8.5	Физические явления, ограничивающие микроминиатюризацию интегральных	
	полупроводниковых элементов	

3. Формы текущего контроля

Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых на практических занятиях.

4. Формы промежуточного контроля

Промежуточный контроль по дисциплине – отчет о выполнении задания практического занятия.

5. Формы заключительного контроля

Форма заключительного контроля по дисциплине — модуль 1 - теоретический зачет, модуль 2 - экзамен.

6. Критерий допуска к зачету и экзамену

К теоретическому зачету и экзамену допускаются студенты, выполнившие полностью учебный график аудиторных и самостоятельных занятий.

Составил доцент кафедры МНЭЛ к.т.н., доцент

Вишняков Н.В.

Заведующий кафедрой МНЭЛ д.ф-м.н., доцент

Литвинов В.Г.