МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Ф. УТКИНА

Кафедра «Автоматика и информационные технологии в управлении»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДИСЦИПЛИНЫ

Методы оптимизации

Специальность 12.05.01 «Электронные и оптико-электронные приборы и системы специального назначения»

ОПОП

«Оптико-электронные информационно-измерительные приборы и системы»

Квалификация выпускника – инженер Формы обучения – очная Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением зачета.

Форма проведения зачета — письменный ответ на предлагаемые вопросы, сформулированным с учетом содержания учебной дисциплины. После выполнения письменной работы обучаемого производится ее оценка преподавателем. При необходимости, проводится теоретическая беседа с обучаемым для уточнения оценки.

1. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях; по результатам выполнения контрольной работы; по результатам выполнения обучающимися индивидуальных заданий; по результатам проверки качества конспектов лекций и иных материалов. При оценивании (определении) результатов освоения дисциплины применяется система (зачтено, не зачтено).

В качестве оценочных средств на протяжении семестра используется компьютерное или бланковое тестирование.

По итогам курса обучающиеся сдают зачет.

Паспорт оценочных материалов по дисциплине

Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контро- лируемой компетенции (или её ча- сти)	Вид, метод, форма оце- ночного ме- роприятия
Тема 1. Введение в дисциплину.	ОПК – 1.1 ОПК – 1.2	Экзамен

Тема 2. Методы и алгоритмы безусловной	ОПК – 1.1 ОПК – 1.2	Экзамен
оптимизации, численные методы решения оптимизационных задач.	OHK – 1.2	
Тема 3. Классическая задача на условный экстремум.	ОПК – 1.1 ОПК – 1.2	Экзамен
Тема 4. Линейное программирование.	ОПК – 1.1 ОПК – 1.2	Экзамен
Тема 5 Методы нелинейного программирования.	ОПК – 1.1 ОПК – 1.2	Экзамен
Тема 6. Дискретное программирование.	ОПК – 1.1 ОПК – 1.2	Экзамен

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной оценки:

«Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, изучивший основную, и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Типовые контрольные задания или иные материалы

Вопросы к зачету по дисциплине

- 1. Математическая постановка задачи конечномерной оптимизации, управляющие переменные, ограничения и допустимое множество, целевая функция. Глобальные и локальные минимумы (максимумы).
- 2. Классификация задач конечномерной оптимизации. Теорема Вейерштрасса.
- 3. Необходимые и достаточные условия наличия безусловного экстремума целевой функции, знакоопределенность матрицы Гессе.
- 4. Общие сведения о численных методах оптимизации: направление поиска, условия останова и др.
- 5. Численные методы одномерной минимизации: постановка задачи, метод деления отрезка пополам, методы полиномиальной интерполяции.
- 6. Численные методы одномерной минимизации: постановка задачи, метод золотого сечения, метод Фибоначчи, метод средней точки.
- 7. Методы многомерной оптимизации, постановка задачи. Методы сопряженных направлений.
- 8. Градиентные методы, их особенности.
- 9. Метод Ньютона.
- 10. Классическая задача на условный экстремум. Постановка задачи, уравнения

связей, точка условного минимума. Метод исключения переменных.

- 11. Необходимые и достаточные условия наличия условного экстремума во внутренней точке, функция Лагранжа, множители Лагранжа.
- 12. Схема нахождения условного экстремума методом Лагранжа.
- 13. Линейное программирование. Формулировка задачи линейного программирования (ЛП). Формы представления задачи ЛП.
- 14. Примеры задач ЛП.
- 15. Свойства допустимого множества и оптимального решения в задаче ЛП.
- 16. Вычислительная процедура симплекс метода.
- 17. Графический метод решения задач линейного программирования
- 18. Прямая и двойственная задачи.
- 19. Теоремы двойственности..
- 20. Транспортная задача. Формулировка транспортной задачи, нахождение начального опорного плана транспортной задачи: метод "северо-западного угла", метод наименьшей стоимости.
- 21. Распределительный метод решения транспортной задачи, оценка оптимальности плана, метод потенциалов.
- 22. Распределительный метод решения транспортной задачи, коррекция плана перевозок.
- 23. Транспортная задача. Нахождение начального опорного плана транспортной задачи методом наименьшей стоимости.
- 24. Задача нелинейного программирования (НЛП). Функция Лагранжа для задачи НЛП.
- 25. Необходимые условия Куна-Таккера в общей задаче НЛП.
- 26. Численные методы решения задач НЛП. Метод штрафных функций.
- 27. Дискретное программирование, постановка задачи. Модели дискретного программирования: задача о назначениях, задача коммивояжера.
- 28. Задача целочисленного линейного программирования, графический метод решения.
- 29. Задача о назначениях, венгерский метод решения.
- 30. Задача коммивояжера, метод ветвей и границ.

Типовые задания для самостоятельной работы

- 1. Аналитические методы решения задач безусловной оптимизации.
- 2. Связь задачи принятия решений с экстремальными задачами.
- 3. Виды целевых функций.
- 4. Методы квазиньютоновской оптимизации.
- 5. Особенности сопряженных методов безусловной оптимизации.
- 6. Выбор сопряженных направлений.

- 7. Корректность задач безусловной оптимизации.
- 8. Двойственные задачи линейного программирования.
- 9. Интерпретация теорем двойственности.
- 10. Открытые ТЗ.
- 11. ТЗ в технике.
- 12. Условия Куна Таккера.
- 13. Методы решения задач НЛП.
- 14. Методы решения задачи коммивояжера.
- 15. Венгерский метод решения задачи о назначениях.

СПИСОК

тестовых вопросов по дисциплине

- 1. Задача максимизации состоит в поиске такого вектора управляющих переменных x^* из допустимого множества X, что _____
 - а) $f(x^*) \ge f(x)$ для всех $x \in X$;
 - б) $f(x^*) \le f(x)$ для всех $x \in X$;
 - в) $f(x^*) < f(x)$ для всех $x \in X$.
- 2. Симметрическая матрица вторых частных производных целевой функции называется
 - а) матрицей Якоби;
 - б) матрицей Фробениуса;
 - в) градиентом;
 - г) матрицей Гессе.
- 3. Для функции одной переменной необходимые условия локальной оптимальности в задаче без ограничений определяются следующими соотношениями:

a)
$$\frac{df(x^*)}{dx} = 0$$
; 6) $\frac{d^2f(x^*)}{dx^2} \ge 0$;

B)
$$\frac{df(x^*)}{dx} = 0$$
, $\frac{d^2f(x^*)}{dx^2} > 0$; $\frac{d^2f(x^*)}{dx^2} > 0$.

4. Точка $x^* \in \mathbb{R}^n$, удовлетворяющая условию _____, называется стационарной точкой функции f(x)

a)
$$\nabla f(x^*) = 0$$
;

6)
$$\nabla^2 f(x^*) = 0$$
;

B)
$$\nabla f(x^*) > 0$$

B)
$$\nabla f(x^*) > 0$$
; $\nabla f(x^*) > 0$, $\nabla^2 f(x^*) = 0$.

5. Алгоритм, формирующий последовательность точек по правилу

$$x^{(k)} = x^{(k-1)} - \left(\nabla^2 f(x^{(k-1)})\right)^{-1} \nabla f(x^{(k-1)}),$$

где $\nabla^2 f(x^{(k-1)})$, $\nabla f(x^{(k-1)})$ - матрица Гессе и градиент целевой функции соответственно, называется

- а) методом Нелдера Мида;
- б) градиентным методом;
- в) квазиньютоновским методом;
- г) методом Ньютона.
- 6. Алгоритм, формирующий последовательность точек по правилу

$$x^{(k)} = x^{(k-1)} - \alpha_k \nabla f(x^{(k-1)})$$

где $\nabla f(x^{(k-1)})$ - градиент целевой функции, называется

а) методом Нелдера – Мида;

- б) градиентным методом;
- в) методом сопряженных направлений;
- г) квазиньютоновским методом.
- 7. За сколько шагов достигается точка безусловного минимума квадратичной функции пяти переменных при использовании метода сопряженных направлений.
 - a) 10; б) 1; в) 2; г) 5.
- 8. Ограничение в виде неравенства $a_{j1}x_1 + ... + a_{jn}x_n \le b_j$ задачи ЛП приводится к канонической форме по схеме _____

a)
$$\sum_{j=1}^{n} a_{ij} x_j + x_{n+1} = b_j$$
, $f(x) = \sum_{j=1}^{n} c_j x_j + c_{n+1} x_{n+1}$, $x_{n+1} \ge 0$;

6)
$$\sum_{j=1}^{n} a_{ij} x_j + x_{n+1} = b_j$$
, $f(x) = \sum_{j=1}^{n} c_j x_j$, $x_{n+1} \ge 0$;

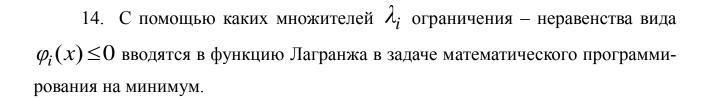
B)
$$\sum_{j=1}^{n} a_{ij} x_j = b_j + x_{n+1}, \ f(x) = \sum_{j=1}^{n} c_j x_j + c_{n+1} x_{n+1}, \ x_{n+1} \ge 0;$$

$$\Gamma) \sum_{j=1}^{n} a_{ij} x_{j} = b_{j} + x_{n+1}, \ f(x) = \sum_{j=1}^{n} c_{j} x_{j}, \ x_{n+1} \ge 0.$$

- 9. Прямой задаче линейного программирования поставлена в соответствие двойственная задача. Выберите ситуацию, возможную при данном условии:
- а) оптимальное значение целевой функции прямой задачи больше, чем оптимальное значение целевой функции двойственной задачи;
 - б) оптимальные планы прямой и двойственной задач различны;
- в) оптимальные значения целевых функций прямой и двойственной задач достигаются в одной и той же точке.
 - 10. В методе золотого сечения отрезок делится на две части _____

- а) отношение всего отрезка к меньшей его части равно отношению большей части к меньшей;
 - б) отношение большей части отрезка к его меньшей части равно 2;
- в) отношение всего отрезка к большей его части равно отношению большей части к меньшей;
 - г) отношение всего отрезка к большей его части равно 2;.
- 11. Непустое ограниченное допустимое множество X задано системой нестрогих линейных неравенств. Функция f выпукла на \mathbb{R}^n . Выберите ситуацию, возможную при данном условии.
 - а) Функция f неограничена снизу на X;
 - б) функция f достигает своего абсолютного минимума внутри X;
 - в) задача минимизации f на X не имеет решения;
 - г) точкой минимума является граничная точка множества X .
- 12. Оптимальное решение прямой задачи линейного программирования равно $x^* = (x_1^*, x_2^*, x_3^*, x_4^*)$. В результате решения соответствующей ей двойственной задачи оказалось, что первое и второе ограничения этой задачи являются активными, а третье и четвертое – неактивными. Какие переменные прямой задачи отличны от нуля _____.
 - a) $x_1^*, x_2^*, x_3^*, x_4^*;$ 6) $x_1^*, x_2^*, x_3^*;$
 - B) $X_3^*, X_4^*;$
- $\Gamma) x_1^*, x_2^*.$
- 13. Фирма выпускает один тип продукции, используя запасы четырех ресурсов $b_1,\ b_2,\ b_3,\ b_4$. Оптимальное решение двойственной задачи линейного программирования равно $y_1^* = 0,3; y_2^* = 0; y_3^* = 0,1; y_4^* = 0$. Какие ресурсы для данной фирмы считаются дефицитными?
 - a) b_2 , b_4 ;

- б) $b_1, b_3;$
- в) b_1 , b_2 , b_3 ;
- Γ) b_1 .



- а) положительных;
- б) отрицательных;

в) любых:

г) неотрицательных.

15. Какую оптимизационную задачу описывает следующая модель

$$C=WL+RK\rightarrow \min$$

$$F(K,L)=Y_0$$

 $K,L \ge 0$,

F(K,L) – нелинейная функция.

- а) линейное программирование;
- б) классическая задача на условный экстремум;
- в) нелинейное программирование;
- г) дискретное программирование.

16. Оптимальное решение задачи линейного программирования равно ____

$$F(x_1, x_2) = x_1 + 2 \cdot x_2 \rightarrow \max,$$

 $x_1 - x_2 \ge -1,$
 $x_1 \le 3,$
 $x_1 \ge 0, x_2 \ge 0.$

- a) $(x_1 x_2) = (0 \ 0);$ 6) $(x_1 x_2) = (3 \ 4);$
- B) $(x_1 x_2) = (4 4)$; Γ $(x_1 x_2) = (0 1)$.

17. Начальное допустимое базисное решение задачи линейного программирования равно

$$F(x_1, x_2) = x_1 + 2 \cdot x_2 \to \max$$

$$x_1 - x_2 \le -1,$$

$$x_1 - x_2 \ge -3,$$

$$x_1 \le 3,$$

$$x_1 \ge 0, x_2 \ge 0.$$

a)
$$(x_1 x_2 x_3 x_4 x_5) = (0 \ 0 \ -1 \ 3 \ 3);$$

б)
$$(x_1 x_2 x_3 x_4 x_5) = (0 \ 0 \ 1 \ 2 \ 3);$$

B)
$$(x_1 x_2 x_3 x_4 x_5) = (1 \ 0 \ 0 \ 2 \ 3);$$

r)
$$(x_1 x_2 x_3 x_4 x_5) = (0 \ 1 \ 0 \ 2 \ 3)$$
.

18. Стационарная точка функции Лагранжа задачи

$$f(x_1, x_2) = x_1^2 + x_2^2 \rightarrow min$$

 $x_1 + x_2 = 1$

равна _____

a)
$$(x_1 \ x_2 \ \lambda)^* = (-0.5 \ 0.5 \ 1);$$
 6) $(x_1 \ x_2 \ \lambda)^* = (0.5 \ 0.5 \ 1);$

B)
$$(x_1 \ x_2 \ \lambda)^* = (-0.5 \ -0.5 \ 1);$$
 Γ) $(x_1 \ x_2 \ \lambda)^* = (1 \ 0.5 \ 1);$

19. Фирма осуществляет выпуск продукции одного вида из двух ресурсов K, L по технологии Y = F(K, L). Цена единицы продукции - p, цены ресурсов w_K , w_L . Модель фирмы, максимизирующей прибыль, имеет вид ___.

a)
$$Pr(K, L) = pF(K, L) - w_K K - w_L L \to \max_{K, L > 0}$$
;

б)
$$Pr(K, L) = pF(K, L) - w_K K - w_L L \rightarrow max;$$

B)
$$Pr(K, L) = pF(K, L) \rightarrow \max_{K, L > 0}$$
;

$$\Gamma) \Pr(K, L) = pF(K, L) - w_K K - w_L L \to \min_{K, L \ge 0}.$$

20. В задаче квадратичного программирования _____

- а) целевая функция и ограничения являются квадратичными функциями;
- б) целевая функция линейная, а ограничения являются квадратичными

функциями;

- в) целевая функция квадратичная, а ограничения являются линейными функциями;
- г) целевая функция квадратичная, а ограничения являются нелинейными функциями.
 - 21. В задаче линейного программирования оптимальное решение является
 - а) крайней точкой допустимого множества решений;
 - б) вершиной симплекса;
- в) допустимым базисным решением системы функциональных ограничений;
 - г) базисным решением системы функциональных ограничений.
 - 22. Сколько точек включает допустимое множество задачи:

$$f(x_1, x_2) = 2x_1 + 3x_2 \rightarrow \max,$$

 $5x_1 + 7x_2 \le 35,$
 $4x_1 + 9x_2 \le 36,$
 $x_1, x_2 \ge 0,$
 $x_1, x_2 - \mu e$ лые.

- a) 50; б) 23; в) 14; г) 35.