ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА"

СОГЛАСОВАНО Зав. выпускающей кафедры **УТВЕРЖДАЮ**

Микросхемотехника

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Радиотехнических устройств

Учебный план 11.03.01_24_00_МФТИ.plx

11.03.01 Радиотехника

Квалификация бакалавр

Форма обучения очная

Общая трудоемкость 4 ЗЕТ

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	5 (3	3.1)	Итого		
Недель	1	6			
Вид занятий	УП	РΠ	УП	РΠ	
Лекции	16	16	16	16	
Лабораторные	16	16	16	16	
Иная контактная работа	0,25	0,25	0,25	0,25	
Итого ауд.	32,25	32,25	32,25	32,25	
Контактная работа	32,25	32,25	32,25	32,25	
Сам. работа	103	103	103	103	
Часы на контроль	8,75	8,75	8,75	8,75	
Итого	144	144	144	144	

Программу составил(и):

Старший преподаватель, Степашкин В.А.

Рабочая программа дисциплины

Микросхемотехника

разработана в соответствии с ФГОС ВО:

 Φ ГОС ВО - бакалавриат по направлению подготовки 11.03.01 Радиотехника (приказ Минобрнауки России от 19.09.2017 г. № 931)

составлена на основании учебного плана:

11.03.01 Радиотехника

утвержденного учёным советом вуза от 26.01.2024 протокол № 8.

Рабочая программа одобрена на заседании кафедры

Радиотехнических устройств

Протокол от 30.05.2024 г. № 9 Срок действия программы: 20242028 уч.г. Зав. кафедрой Паршин Юрий Николаевич

Визирование РПД для исполнения в очередном учебном году Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2025-2026 учебном году на заседании кафедры Радиотехнических устройств Протокол от ______2025 г. № ___ Зав. кафедрой Визирование РПД для исполнения в очередном учебном году Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2026-2027 учебном году на заседании кафедры Радиотехнических устройств Протокол от __ _____2026 г. № ___ Зав. кафедрой Визирование РПД для исполнения в очередном учебном году Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2027-2028 учебном году на заседании кафедры Радиотехнических устройств Протокол от ____ 2027 г. № ___ Зав. кафедрой _____ Визирование РПД для исполнения в очередном учебном году Рабочая программа пересмотрена, обсуждена и одобрена для

исполнения в 2028-2029 учебном году на заседании кафедры

Радиотехнических устройств

Протокол от	_ 2028 г. №
n 1 v	
Зав. кафедрой	

УП: 11.03.01 24 00 МФТИ.plx

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 изучение студентами принципов построения интегральных схем, схемотехнических решений (электрических и структурных схем), используемых в интегральных микросхемах и радиоэлектронной аппаратуре на их основе, а также применения интегральных микросхем в различных микроэлектронных аналоговых устройствах. При изучении этой дисциплины закладываются основы знаний, позволяющих умело использовать современную элементную базу радиоэлектроники и понимать тенденции и перспективы ее развития и практического использования; приобретаются навыки расчета и экспериментального исследования различных функциональных каскадов на основе аналоговых интегральных микросхем

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
Ц	икл (раздел) ОП:
2.1	Требования к предварительной подготовке обучающегося:
2.1.1	Основы теории цепей
2.1.2	Физика
2.1.3	Ознакомительная практика
2.1.4	Учебная практика
2.1.5	Физика (факультатив)
2.2	Дисциплины (модули) и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:
2.2.1	Основы теории радионавигационных систем и комплексов
2.2.2	Производственная практика
2.2.3	Радиоматериалы и радиокомпоненты
2.2.4	Основы теории радиолокационных систем и комплексов
2.2.5	Выполнение и защита выпускной квалификационной работы
2.2.6	Преддипломная практика

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

ОПК-1.1. Использует фундаментальные законы природы и основные физические и математические законы в процессе исследования физических объектов и процессов

Знать

основы интегральной схемотехники, элементную базу аналоговых интегральных устройств, их принцип работы, характеристики, модели и способы их количественного описания при использовании в радиотехнических цепях и устройствах Уметь

использовать полученную информацию для решения практических задач

Влалеть

методами, необходимыми для выбора элементной базы с учетом требований надежности, устойчивости к воздействию окружающей среды, ЭМС и технологичности

ОПК-1.2. Применяет математический аппарат для анализа свойств и поведения физических объектов

Знать

основы интегральной схемотехники, элементную базу интегральных аналоговых устройств, их принцип работы, характеристики, модели и способы их количественного описания при использовании в радиотехнических цепях и устройствах **Уметь**

использовать полученную информацию для решения практических задач

Владеть

методами, необходимыми для выбора элементной базы с учетом требований надежности, устойчивости к воздействию окружающей среды, ЭМС и технологичности

ОПК-1.3. Составляет математические модели физических объектов и процессов для решения задач инженерной деятельности

Знать

основы интегральной схемотехники, элементную базу аналоговых интегральных устройств, их принцип работы, характеристики, модели и способы их количественного описания при использовании в радиотехнических цепях и устройствах Уметь

использовать полученную информацию для решения практических задач

Владеть

основными навыками экспериментального исследования характеристик устройств на аналоговых микросхемах, работы с приборами; анализа и обработки данных экспериментов

3.1	Знать:
3.1.1	основы интегральной схемотехники, элементную базу интегральных аналоговых устройств, их принцип работы, характеристики, модели и способы их количественного описания при использовании в радиотехнических цепях и устройствах
3.2	Уметь:
3.2.1	использовать полученную информацию для решения практических задач
3.3	Владеть:
3.3.1	владеть методами, необходимыми для выбора элементной базы с учетом требований надежности, устойчивости к воздействию окружающей среды, ЭМС и технологичности, а также основными навыками экспериментального исследования характеристик устройств на аналоговых микросхемах, работы с приборами; анализа и обработки данных экспериментов

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)							
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Форма контроля		
	Раздел 1. Введение. Основные схемотехнические направления построения аналоговых интегральных схем			·		·		
1.1	Основные понятия и определения /Тема/	5	0					
1.2	Определение микросхемотехники. Общая характеристика интегральной электроники как технического и научного направления. Интеграция и миниатюризация — основные принципы микросхемотехники. Теоретические и практические ограничения интеграции и миниатюризации. Определение и понятие интегральной схемы (ИС), классификация ИС, основные компоненты ИС и их основные функции, степени компонентной интеграции и уровни схемотехнического построения ИС. /Лек/	5	1	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Л2.6Л3.1 Л3.2 Л3.3 Л3.4 Э1 Э2			
1.3	Определение микросхемотехники. Общая характеристика интегральной электроники как технического и научного направления. Интеграция и миниатюризация — основные принципы микросхемотехники. Теоретические и практические ограничения интеграции и миниатюризации. Определение и понятие интегральной схемы (ИС), классификация ИС, основные компоненты ИС и их основные функции, степени компонентной интеграции и уровни схемотехнического построения ИС /Ср/	5	4	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.1 Л2.2 Л2.3 Л2.4 Л2.5 Л2.6Л3.1 Л3.2 Л3.3 Л3.4 Э1 Э2			
1.4	Основные свойства компонентов интегральных микросхем. Основные принципы архитектурного построения современных линейных интегральных схем /Тема/	5	0					
1.5	Отличия дискретных и интегральных элементов. Достоинства и недостатки интегральных компонентов. Основные принципы проектирования ИМС: принципы, позволяющие получить стабильность работы схем: принципы отношения, симметрии, малых номиналов, равных потенциалов, активности. /Лек/	5	1	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.4Л3.2 Л3.3 Э1 Э2			

	+					
1.6	Отличия дискретных и интегральных элементов. Достоинства и недостатки интегральных компонентов. Основные принципы проектирования ИМС: принципы, позволяющие получить стабильность работы схем: принципы отношения, симметрии, малых номиналов, равных потенциалов, активности. /Ср/	5	4	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.4Л3.2 Л3.4 Э1 Э2	
	Раздел 2. Дифференциальный каскад (ДК) как основная схема каскада для интегральной схемы					
2.1	Основная (классическая) схема дифференциального каскада /Тема/	5	0			
2.2	Основные свойства идеального и реального ДК. Причины, определяющие широкое применение дифференциального каскада (ДК) в полупроводниковой микросхемотехнике. Основные характеристики ДК. Проходная характеристика ДК и ее свойства. Основные свойства схем на основе ДК и их сравнение со схемой ОЭ /Лек/	5	1	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.4Л3.2 Л3.4 Э1 Э2	
2.3	Основные свойства идеального и реального ДК. Причины, определяющие широкое применение дифференциального каскада (ДК) в полупроводниковой микросхемотехнике. Основные характеристики ДК. Проходная характеристика ДК и ее свойства. Основные свойства схем на основе ДК и их сравнение со схемой ОЭ /Ср/	5	4	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.4Л3.2 Л3.3 Э1 Э2	
2.4	Дифференциальный каскад с активной (динамической) нагрузкой /Тема/	5	0			
2.5	Особенности работы дифференциального каскада (ДК) в микрорежиме. Применение в ДК активной (динамической) нагрузки. Основные характеристики ДК с активной нагрузкой. Схемные решения ДК с активной нагрузкой. /Лек/	5	1	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.4Л3.2 Л3.3 Э1 Э2	
2.6	Особенности работы дифференциального каскада (ДК) в микрорежиме. Применение в ДК активной (динамической) нагрузки. Основные характеристики ДК с активной нагрузкой. Схемные решения ДК с активной нагрузкой. /Ср/	5	4	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.4Л3.2 Л3.4 Э1 Э2	
2.7	Шумовые свойства и параметры дифференциального каскада /Teмa/	5	0			
2.8	Определение шумов. Эквивалентная схема реально-го шумящего четырехполюсника. Коэффициент шума. Условие согласования по минимуму коэффициента шума. Шумовая мощность ДК. Спектры НЧ и ВЧ шумов. /Ср/	5	6	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.3-3 ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.4Л3.2 Л3.3 Э1 Э2	
2.9	Способы подачи сигнала на дифференциальный каскад /Тема/	5	0			

2.10	I a			07774 4 4 7	71.1	
2.10	Симметричный и несимметричный методы: схемы, достоинства и недостатки. Эквивалентная схема. Требования к ГСТ при использовании несимметричного метода /Лек/	5	1	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.4Л3.2 Л3.3 Э1 Э2	
2.11	Симметричный и несимметричный методы: схемы, достоинства и недостатки. Эквивалентная схема. Требования к ГСТ при использовании несимметричного метода /Ср/	5	5	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.4Л3.2 Л3.4 Э1 Э2	
	Раздел 3. Основные схемы базовых и вспомогательных каскадов аналоговых интегральных схем					
3.1	Входные каскады интегральных схем /Тема/	5	0			
3.2	Основные требования. Базовая схема — дифференциальный усилитель (каскад): типовая схема, ДК с динамической нагрузкой, ДК с перевернутой нагрузкой, способы повышения входного сопротивления ДК (схемотехника). Реализация ДК в промышленных схемах /Лек/	5	2	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.4Л3.2 Л3.3 Э1 Э2	
3.3	Основные требования. Базовая схема — дифференциальный усилитель (каскад): типовая схема, ДК с динамической нагрузкой, ДК с перевернутой нагрузкой, способы повышения входного сопротивления ДК (схемотехника). Реализация ДК в промышленных схемах /Ср/	5	2	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.4 Л2.6Л3.2 Л3.4 Э1 Э2	
3.4	Выходные каскады интегральных схем /Тема/	5	0			
3.5	Основные требования. Базовая и практическая схемы. Выходной каскад на транзисторах разного типа проводимости. Схемы защиты промышленных усилителей. Их свойства, характеристики, параметры. /Лек/	5	2	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.4 Л2.6Л3.2 Л3.3 Э1 Э2	
3.6	Основные требования. Базовая и практическая схемы. Выходной каскад на транзисторах разного типа проводимости. Схемы защиты промышленных усилителей. Их свойства, характеристики, параметры. /Ср/	5	2	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-3	Л1.1 Л1.2Л2.3 Л2.4 Л2.6Л3.2 Л3.4 Э1 Э2	
3.7	Источники тока (генераторы стабильного тока (ГСТ)) /Тема/	5	0			

3.8	Определения ГСТ. Две основные схемы ГСТ. Задачи при выборе схемы ГСТ. Способы, позволяющие получить аппроксимацию, близкую к идеальному источнику тока. Основная схема построения ГСТ — токовое зеркало и ее свойства. Схемотехника ГСТ на биполярных и полевых транзисторах, основные свойства, достоинства и недостатки схем. /Лек/	5	2	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.4 Л2.6Л3.2 Л3.3 Э1 Э2	
3.9	Определения ГСТ. Две основные схемы ГСТ. Задачи при выборе схемы ГСТ. Способы, позволяющие получить аппроксимацию, близкую к идеальному источнику тока. Основная схема построения ГСТ — токовое зеркало и ее свойства. Схемотехника ГСТ на биполярных и полевых транзисторах, основные свойства, достоинства и недостатки схем. /Ср/	5	2	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.4 Л2.6Л3.2 Л3.4 Э1 Э2	
3.10	Источники напряжения /Тема/	5	0			
3.11	Определение источника напряжения. Основные требования, предъявляемые к ним. Схемотехника источников напряжения и источников опорного напряжения, основные свойства, достоинства и недостатки схем. /Лек/	5	1,5	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.4 Л2.6Л3.2 Л3.3 Э1 Э2	
3.12	Определение источника напряжения. Основные требования, предъявляемые к ним. Схемотехника источников напряжения и источников опорного напряжения, основные свойства, достоинства и недостатки схем. /Ср/	5	2	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.4 Л2.6Л3.2 Л3.4 Э1 Э2	
3.13	Схемы сдвига уровня постоянного напряжения /Тема/	5	0			
3.14	Необходимость применения схем сдвига уровня в ИС. Основная задача, решаемая с помощью трансляторов уровня. Схемотехника трансляторов уровня, основные свойства, достоинства и недостатки схем /Лек/	5	1,5	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.4 Л2.6Л3.2 Л3.3 Э1 Э2	
3.15	Необходимость применения схем сдвига уровня в ИС. Основная задача, решаемая с помощью трансляторов уровня. Схемотехника трансляторов уровня, основные свойства, достоинства и недостатки схем /Ср/	5	2	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.4 Л2.6Л3.2 Л3.4 Э1 Э2	
	Раздел 4. Схемотехника операционных усилителей					
4.1	Общие характеристики операционных усилителей /Тема/	5	0			

4.2	Определение и условные обозначения операционных усилителей (ОУ). Структурные и упрощенные схемы стандартных ОУ. Схема включения. Условие баланса ОУ /Лек/	5	0,25	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.2 Л3.3 Э1 Э2	
4.3	Определение и условные обозначения операционных усилителей (ОУ). Структурные и упрощенные схемы стандартных ОУ. Схема включения. Условие баланса ОУ /Ср/	5	3	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.2 Л3.3 Э1 Э2	
4.4	Основные свойства операционных усилителей /Тема/	5	0			
4.5	Свойства идеального ОУ. Два правила анализа схем включения ОУ. Свойства реального ОУ. /Лек/	5	0,25	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.2 Л3.3 Э1 Э2	
4.6	Свойства идеального ОУ. Два правила анализа схем включения ОУ. Свойства реального ОУ. /Ср/	5	3	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.2 Л3.4 Э1 Э2	
4.7	Основные параметры операционных усилителей /Тема/	5	0			
4.8	Коэффициент усиления, входное и выходное сопротивления, напряжение смещения нуля и его температурный дрейф, коэффициент влияния источника питания, входной ток и его температурный дрейф, разность входных токов и их температурный дрейф, частота единичного усиления, скорость нарастания выходного напряжения, время восстановления. /Ср/	5	4	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.2 Л3.4 Э1 Э2	
4.9	Работа операционного усилителя с обратной связью /Тема/	5	0			
4.10	Основные математические выражения. Амплитудно-частотная характеристика ОУ. Частотная коррекция ОУ. /Ср/	5	5	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.2 Л3.4 Э1 Э2	
	Раздел 5. Аналоговые устройства на основе операционных усилителей					
5.1	Линейные и нелинейные схемы на базе операционных усилителей и методы их расчета /Тема/	5	0			

5.2	Инвертирующий и неинвертирующий усилители. Точный повторитель напряжения. Масштабирующий усилитель. Особенности схем включения ОУ от однополярного источника напряжения питания. Суммирующий усилитель. Неинвертирующий сумматор. Усилитель разности. Усилитель с регулируемым коэффициентом усиления. Преобразователи "ток-напряжение" и "напряжение-ток". Аналоговый вольтметр постоянного тока. Усилитель с регулируемым сдвигом фазы. Компаратор. Логарифмический усилитель. /Ср/	5	10	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.2 Э1 Э2	
5.3	Исследование неинвертирующих усилителей на операционном усилителе /Лаб/	5	4	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.2 Э1 Э2	
5.4	Исследование инвертирующих усилителей на операционном усилителе /Лаб/	5	4	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.2 Э1 Э2	
5.5	Активные фильтры на базе операционных усилителей /Тема/	5	0			
5.6	Параметры, характеристики, назначение фильтров. Преимущества и недостатки активных фильтров. Активные фильтры нижних и верхних частот, полосовые и режекторные фильтры. Методика расчета активных фильтров. Выбор элементов схемы на ОУ, обеспечивающие заданную точность обработки сигналов /Ср/	5	10	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-3	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.3 Э1 Э2	
5.7	Исследование активных фильтров нижних и верхних частот на операционном усилителе /Лаб/	5	4	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.2 Л3.3 Э1 Э2	
5.8	Исследование полосового и режекторного активных фильтров на операционном усилителе /Лаб/	5	4	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.6Л3.1 Л3.2 Л3.4 Э1 Э2	
	Раздел 6. Микросхемы СВЧ диапазона					
6.1	Общие положения /Тема/	5	0			

			1			1
6.2	Твердотельная электроника СВЧ. Арсенид галлия — основной материал монолитных микроволновых ИС. Тонкопленочные и толстопленочные гибридные ИС. Монолитные ИС. Проблема воспроизводимости и повторяемости результатов. /Лек/	5	0,5	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.2 Л3.3 Э1 Э2	
6.3	Твердотельная электроника СВЧ. Арсенид галлия — основной материал монолитных микроволновых ИС. Тонкопленочные и толстопленочные гибридные ИС. Монолитные ИС. Проблема воспроизводимости и повторяемости результатов. /Ср/	5	3	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.2 Л3.3 Э1 Э2	
6.4	Элементная база электроники СВЧ /Тема/	5	0			
6.5	Пассивные и активные элементы, Линии межсоединений. Микрополосковые линии. Пассивные СВЧ элементы – резисторы, конденсаторы, индуктивности. Диоды СВЧ диапазона. Интегральные СВЧ транзисторы: полевые транзисторы с барьером Шоттки и другие типы транзисторов СВЧ диапазона /Лек/	5	0,5	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.2 Э1 Э2	
6.6	Пассивные и активные элементы, Линии межсоединений. Микрополосковые линии. Пассивные СВЧ элементы – резисторы, конденсаторы, индуктивности. Диоды СВЧ диапазона. Интегральные СВЧ транзисторы: полевые транзисторы с барьером Шоттки и другие типы транзисторов СВЧ диапазона /Ср/	5	6	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.3 Л2.6Л3.2 Э1 Э2	
6.7	Монолитные интегральные микросхемы /Тема/	5	0			
6.8	Транзисторные структуры для монолитных ИС /Лек/	5	0,5	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.2 Э1 Э2	
6.9	Транзисторные структуры для монолитных ИС /Cp/	5	4	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.3 Л2.6Л3.2 Э1 Э2	
	Раздел 7. Проблемы повышения степени интеграции. Основы функциональной электроники. Микросистемная техника и наноэлектроника					
7.1	Проблемы повышения степени интеграции /Тема/	5	0			

7.2	Барьеры на пути перехода от микро- к наноэлектронике. Особенности наноэлектронных приборов. Новые транзисторные структуры: полевые транзисторы, транзисторы с резонансным туннелированием. Квантовые приборы наноэлектроники. Одноэлектронные приборы. Новые материалы наноэлектроники. /Ср/	5	6	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.3-3 ОПК-1.3-3 ОПК-1.3-У	Л1.1 Л1.2Л2.5 Л2.6Л3.2 Э1 Э2	
	Основы функциональной электроники /Тема/		0			
7.4	Возможности функциональной электроники. Элементы акустоэлектроники. Функциональная полупроводниковая электроника. Приборы функциональной электроники 2-го поколения. /Ср/	5	6	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.5 Л2.6Л3.2 Э1 Э2	
7.5	Микросистемная техника и наноэлектроника /Тема/	5	0			
7.6	Основные направления. Умная пыль, умная поверхность, умная структура. ВЧ микросистемы. /Ср/	5	6	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2Л2.5 Л2.6Л3.2 Э1 Э2	
	Раздел 8. Иная контактная работа. Часы на контроль					
8.1	Иная контактная работа /Тема/	5	0			
8.2	Консультирование в течение семестра /ИКР/	5	0,25	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У ОПК-1.3-В	Л1.1 Л1.2 Э1 Э2	
8.3	Часы на контроль /Тема/	5	0			
8.4	Зачет с оценкой /ЗаО/	5	8,75	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В ОПК-1.3-3 ОПК-1.3-У	л1.1 л1.2 Э1 Э2	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Оценочные

материалы приведены в приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Микросхемотехника»

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

6.1. Рекомендуемая литература

6.1.1. Основная литература					
№	Авторы, составители	Заглавие	Издательство, год	Количество/ название ЭБС	
Л1.1	Кожухов, В. В.	Электронные цепи и микросхемотехника. Импульсные и цифровые устройства. Конспект лекций: учебное пособие	Новосибирск: Новосибирски й государственн ый технический университет, 2021, 166 с.	978-5-7782- 4557-0, https://www.i prbookshop.r u/126611.htm l	
Л1.2	Игнатов А.Н., Полянская А.В.	Микросхемотехника. : Учебное пособие	Новосибирск: Сибирский государственн ый университет телекоммуник аций и информатики, 2021, 460 с	https://www.i prbookshop.r u/138769.htm	
		6.1.2. Дополнительная литература			
№	Авторы, составители	Заглавие	Издательство, год	Количество/ название ЭБС	
Л2.1	Ульрих Титце, Кристоф Шенк, Карабашев Г. С.	Полупроводниковая схемотехника. Т.І	Саратов: Профобразова ние, 2019, 826 с.	978-5-4488- 0052-8, http://www.ip rbookshop.ru/ 88003.html	
Л2.2	Ульрих Титце, Кристоф Шенк, Карабашев Г. С.	Полупроводниковая схемотехника. Т.П	Саратов: Профобразова ние, 2019, 940 с.	978-5-4488- 0059-7, http://www.ip rbookshop.ru/ 88004.html	
Л2.3	Алексенко А.Г., Шагурин И.И.	Микросхемотехника : Учеб.пособие для вузов	М.:Радио и связь, 1990, 496c.	5-256-00693- 2, 1	
Л2.4	Степаненко И.П.	Основы микроэлектроники: Учеб.пособие для вузов	М.:Лаборатор ия Базовых Знаний, 2003, 488c.	5-93208-045- 0, 1	
Л2.5	Игнатов А.Н.	Микросхемотехника и наноэлектроника : учеб. пособие	СПб.: Лань, 2011, 528c.	978-5-8114- 1161-0, 1	
Л2.6	Щука А.А.	Электроника : учеб.	СПб.: БХВ- Петербург, 2008, 739с.	978-5-9775- 0160-6, 1	
		6.1.3. Методические разработки		•	
No	Авторы, составители	Заглавие	Издательство, год	Количество/ название ЭБС	
Л3.1	Степашкин В.А., Озеран С.П.	Линейные усилители и активные фильтры : Методические указания	Рязань: РИЦ РГРТУ, 2014,	https://elib.rsr eu.ru/ebs/dow nload/977	

УП: 11.03.01 24 00 МФТИ.plx cтp. 14

УП: П.О	33.01_24_00_MФ1И.plx				стр.
№	Авторы, составители		Заглавие	Издательство, год	Количество название ЭБС
Л3.2	Степашкин В.А.	Микросхемото	ехника : Методические указания	Рязань: РИЦ РГРТУ, 2020,	https://elib.rs eu.ru/ebs/dov nload/2410
Л3.3	Степашкин В.А.	Микросхемот	ехника : метод. указ. к контр. работе	Рязань, 2020, 64c.	, 1
Л3.4	Степашкин В.А.	Микросхемот	ехника : метод. указ. к контр. работе	Рязань, 2020, 64c.	, 1
		 ень ресурсов и	иформационно-телекоммуникационной с	сети "Интернет"	
Э1 	Микросхемотехника				
Э2	Микросхемотехника		ного обеспечения и информационных спр		
	6.3.1 Перечень лице	нзионного и св	ободно распространяемого программного отечественного производства		исле
Наименование			Описан	ние	
adobe PDFReader			Свободное ПО		
Micro-Cap 12			Свободное ПО		
MATLAB Classroom, Simulink Classroom			Коммерческая лицензия		
WinDjView			Свободное ПО		
FoxitReader			Свободное ПО		
MS Office 2003			Комерческая лицензия		
Mozilla			Свободно распространяемое программное обеспечение под лицензиями		

6.3.2 Перечень информаці	ионных справочных систем
--------------------------	--------------------------

Коммерческая лицензия

Бессрочно. 8A1365510

Windows

система

Операционная

XP/Vista/7/8/10

Mathcad University Classroom

Kaspersky Endpoint Security

	7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)				
1	412 лабораторный корпус. учебная лаборатория, оснащенная лабораторным оборудованием, для проведения лабораторных работ Учебно-лабораторные стенды по электронике и микросхемотехнике со сменными панелями; Генераторы сигналов GRG-450B – 8 шт, Г3-112 – 8 шт; Милливольметр двухканальный GVT-427B – 8 шт; Мультиметр М-838 – 8 шт; Частотомеры Ч3-34A – 4 шт, Ч3-35A – 4 шт; Вольтметр универсальный B7-26 -1 шт				
2	415 лабораторный корпус. Помещение для самостоятельной работы Специализированная мебель (56 посадочных мест), магнитно-маркерная доска, экран. Мультимедийный проектор (NEC) ПК: Intel Pentium /8Gb – 1 шт Возможность подключения к сети Интернет и обеспечением доступа в электронную информационно-образовательную среду РГРТУ				
3	413 лабораторный корпус. помещение для самостоятельной работы обучающихся, лекционная аудитория Специализированная мебель (70 посадочных мест), магнитно-маркерная доска, экран. Мультимедийный проектор (NEC) ПК: Intel Core 2 duo /2Gb – 1 шт Возможность подключения к сети Интернет и обеспечением доступа в электронную информационно-образовательную среду РГРТУ				

Microsoft Imagine: Номер подписки 700102019, бессрочно

Лицензия на ПО РКG-7517-LN, SON - 2469998, SCN -

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Методическое обеспечение дисциплины приведено в приложении к рабочей программе дисциплины (см. документ «Методические указания дисциплины «Микросхемотехника»).

		Оператор ЭДО ООО "Компания "Тензор"				
ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ						
ПОДПИСАНО ЗАВЕДУЮЩИМ КАФЕДРЫ	ФГБОУ ВО "РГРТУ", РГРТУ, Паршин Юрий Николаевич, Заведующий кафедрой РТУ	10.09.24 14:11 (MSK)	Простая подпись			
тоттеди вт		Подписано				
ПОДПИСАНО ЗАВЕДУЮЩИМ ВЫПУСКАЮЩЕЙ КАФЕДРЫ	ФГБОУ ВО "РГРТУ", РГРТУ, Кошелев Виталий Иванович, Заведующий кафедрой РТС	10.09.24 17:11 (MSK)	Простая подпись			
ПОДПИСАНО НАЧАЛЬНИКОМ УРОП	ФГБОУ ВО "РГРТУ", РГРТУ, Ерзылёва Анна Александровна, Начальник УРОП	11.09.24 10:01 (MSK)	Простая подпись			