МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Электронные вычислительные машины»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Языки низкоуровневого программирования»

Направление подготовки 09.03.01 Информатика и вычислительная техника

Направленность (профиль) подготовки «Программно-аппаратное обеспечение вычислительных систем, комплексов и компьютерных сетей»

> Уровень подготовки Академический бакалавриат

Квалификация (степень) выпускника — бакалавр

Форма обучения — очная, заочная

1 ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено – не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена и теоретического зачета.

Форма проведения экзамена — письменный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса и одна задача. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения экзаменационной оценки.

2 ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции (или ее части) в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Уровень освоения компетенций, формируемых дисциплиной:

Описание критериев и шкалы оценивания тестирования:

Шкала оценивания	Критерий
3 балла (эталонный уровень)	Уровень усвоения материала, предусмотренного программой: процент верных ответов на тестовые вопросы от 85 до 100%
2 балла (продвинутый уровень)	Уровень усвоения материала, предусмотренного программой: процент верных ответов на тестовые вопросы от 70 до 84%
1 балл (пороговый уровень)	Уровень усвоения материала, предусмотренного программой: процент верных ответов на тестовые вопросы от 50 до 69%
0 баллов	Уровень усвоения материала, предусмотренного программой: процент верных ответов на тестовые вопросы от 0 до 49%

Описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий
3 балла	выставляется студенту, который дал полный ответ на вопрос,
(эталонный уровень)	показал глубокие систематизированные знания, смог привести
	примеры, ответил на дополнительные вопросы преподавателя
2 балла	выставляется студенту, который дал полный ответ на вопрос, но
(продвинутый уровень)	на некоторые дополнительные вопросы преподавателя ответил
	только с помощью наводящих вопросов
1 балл	выставляется студенту, который дал неполный ответ на вопрос в
(пороговый уровень)	билете и смог ответить на дополнительные вопросы только с
	помощью преподавателя
0 баллов	выставляется студенту, который не смог ответить на вопрос

Описание критериев и шкалы оценивания практического задания:

Шкала оценивания	Критерий	
3 балла	Задача решена верно	
(эталонный уровень)		
2 балла	Задача решена верно, но имеются неточности в логике решения	
(продвинутый уровень)		
1 балл	Задача решена верно, с дополнительными наводящими	
(пороговый уровень)	вопросами преподавателя	
0 баллов	Задача не решена	

На промежуточную аттестацию (экзамен) выносится тест, два теоретических вопроса и 2 задачи. Максимально студент может набрать 15 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «отлично», «хорошо», «удовлетворительно» и «неудовлетворительно».

Оценка «отлично» выставляется студенту, который набрал в сумме 15 баллов (выполнил все задания на эталонном уровне). Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «хорошо» выставляется студенту, который набрал в сумме от 10 до 14 баллов при условии выполнения всех заданий на уровне не ниже продвинутого. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «удовлетворительно» выставляется студенту, который набрал в сумме от 5 до 9 баллов при условии выполнения всех заданий на уровне не ниже порогового.

Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «неудовлетворительно» выставляется студенту, который набрал в сумме менее 5 баллов или не выполнил всех предусмотренных в течение семестра практических заданий.

З ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
Тема 1. Общие принципы организации ЭВМ на примере ЭВМ семейства IBM РС.	ОПК-3	экзамен
Тема 2. Основные элементы программирования на Ассемблере.	ОПК-3	экзамен
Тема 3. Сложные типы данных в Ассемблере: массивы, строки, структуры и записи.	ПК-6	экзамен
Тема 4. Макросредства в языке Ассемблер.	ПК-6	экзамен
Тема 5. Работа с файлами и директориями в Ассемблере.	ОПК-3,ПК-6	экзамен

4 ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

Промежуточная аттестация в форме экзамена

Код компетенции	Результаты освоения ОПОП Содержание компетенций
ОПК-3	способен учитывать современные тенденции развития электроники,
	измерительной и вычислительной техники, информационных
	технологий в своей профессиональной деятельности

а) типовые тестовые вопросы:

- 1. Предложения языка ассемблера состоят из следующих компонент:
- +а) метка или имя;
- +б) мнемоника;
- +в) операнды;
- +г) комментарии;
- д) константы;
- е) литералы;
- 2. Для указания ассемблеру того, что в программе используются числа в двоичной системе исчисления необходимо:
- +а) в конце каждого двоичного числа ставить букву «b»;
- б) в конце каждого двоичного числа ставить обозначение «bit»;
- в) в начале каждого двоичного числа ставить букву «b», а в конце 2;
- г) в начале каждого двоичного числа ставить цифру «2», а в конце букву «b»;
- д) в начале каждого двоичного числа ставить букву «b»;
- е) в конце каждого двоичного числа ставить цифру «2»;
- ж) ничего не ставить, ассемблер сам разберётся, где двоичная запись, а где шестнадцатеричная;

- 3. Для представления отрицательного числа в компьютере выполняются следующие операции:
- +а) инверсия положительного числа— прибавление 1 к результату инверсии = отрицательное число;
- б) прибавление 1 к положительному числу инверсия результата = отрицательное число;
- в) побитовое сложение положительного числа с ним же самим инверсия результата сложения плюс 1 = отрицательное число;
- г) инверсия положительного числа побитовое сложение инвертированного результата с ним же самим плюс 1 = отрицательное число;
- 4. Процессор это:
- +а) кремневая плата или подложка с логическими цепями, состоящими из транзисторов, скрытая в пластмассо-вом корпусе, снабжённом контактными ножками;
- б) кремневая плата, обеспечивающая механизм страничной организации памяти, которая необходима для любой многозадачной операционной системы;
- в) кремневая плата, хранящая инструкции и данные в виде двоичных сигналов в двоичной системе исчисления;
- 5. К регистрам общего назначения относят регистры: +a) EAX: +б) EBX: $+_{\rm B}$) ECX; $+_{\Gamma}$) EDX; д) EES: e) EDS; ж) ESS; 3) ECS; 6. Выберите правильные записи команд: a) mov ah,123h; б) mov bx,12345h; в) mov dl.100h: $+\Gamma$) mov cx,1234h; +д) mov al,56h; e) mov es,ds; + \mathbf{x}) mov dx,0DEF0h; 7. Сегментные регистры в архитектуре x86_32 имеют: +а) 16 разрядов; б) 20 разрядов; в) 8 разрядов;
- 8. Сегментные регистры:

г) 32 разряда;д) 64 разряда;

- +а) хранят начальные адреса сегментов программы и обеспечивают возможность обращения к этим сегментам;
- б) используются для хранения данных. В эти регистры может быть записан адрес возврата в основную про-грамму после завершения работы процедуры;
- в) хранят машинные коды команд после трансляции программы;
- г) хранят адрес инструкции, которая должна быть выполнена следующей;

- 9. Выберите правильные трактовки:
- +a) флаг ZF признак нуля;
- +б) флаг СF признак переноса;
- +в) флаг SF признак знака;
- г) флаг TF признак полупереноса;
- 10. КОП это:
- +а) код операции;
- +б) мнемоническое обозначение соответствующей машинной команды, макрокоманды или директивы трансля-тора;
- в) часть команды, макрокоманды или директивы ассемблера, обозначающая объекты над которыми произво-дятся командные операции;
- г) последовательность допустимых символов, обозначающих команду;
- 11. Когда асемблер встречает в программе команду jmp \$+3 то:
- а) прибавляет к переменной \$ цифру 3;
- б) прибавляет к машинному коду операции цифру 3;
- +в) к текущему смещению прибавляет 3 и переходит к команде, имеющей полученный адрес;
- г) прибавляет к содержимому регистра АХ цифру 3 и переходит к команде, имеющей полученный адрес;
- 12. Параметры модели памяти могут быть следующие:
- +a) TINY;
- +б) SMALL;
- +B) MEDIUM;
- $+\Gamma$) FLAT;
- д) LITTLE;
- 13. Тип данных dq резервирует в памяти:
- а) 2 байта;
- б) 4 байта;
- +в) 8 байтов;
- г) 10 байтов;
- 14. Атрибут выравнивания сегмента может принимать следующие значения:
- +a) BYTE;
- +б) WORD;
- +B) DWORD;
- г) PRIVATE;
- д) PUBLIC;
- e) COMMON;
- 15. Параметры модели памяти могут быть следующие:
- +a) TINY;
- +б) SMALL;
- +B) MEDIUM;
- $+_{\Gamma}$) FLAT;
- д) LITTLE;
- 16. Прямая адресация делится на:
- +а) относительную прямую адресацию;

- +б) абсолютную прямую адресацию;
- в) косвенную прямую адресацию;
- г) базовую прямую адресацию;
- 17. К командам пересылки данных относятся:
- +a) mov;
- +б) xchg;
- +B) cmovcc;
- $+\Gamma$) bswap;
- д) shr;
- e) shl;
- ж) in, out;
- 18. Выберите неправильно записанные команды:
- +a) mov fld,fls;
- +б) mov ds,@data;
- +B) mov es,ds;
- $+\Gamma$) mov ax,bl;
- д) mov ax,dx;
- 19. Допустимыми операндами-источниками для команды IN являются:
- +a) регистр DX;
- +б) значение-константа меньшее 255;
- в) регистр АХ;
- г) регистр ВХ;
- 20. Команда in AX,DX:
- +а) загружает в АХ слово из порта с номером из DX;
- б) загружает в АХ байт из порта с номером из DX;
- в) загружает байт в порт, адресуемый регистром DX;
- г) загружает слово в порт, адресуемый регистром DX;
- д) загружает в AX содержимое порта DX;
- б) типовые практические задания:

Задание 1

Написать программу пересылки данных из одного сегмента памяти в другой.

Критерии выполнения заданий 3

Задание считается выполненным, если обучающийся написал правильный код на ассемблере.

Задание 2

Написать программу транспонирования массива данных с помощью косвенной адресации.

Критерии выполнения заданий 3

Задание считается выполненным, если обучающийся написал правильный код на ассемблере.

Код компетенции	Результаты освоения ОПОП Содержание компетенций
компстепции	
ПК-6	способен обосновывать разработку функциональной структуры и
	выбор принципов организации технического, программного и
	информационного обеспечения проектирования специальных
	организационно-технических систем

- а) типовые тестовые вопросы:
- 1. Основное предназначение регистров ММХ это:
- а) работа с одной целочисленной переменной, объём которой 8 байт;
- +б) работа с несколькими целочисленными переменными одинаковой длины, которые занимают в сумме 8 байт;
- в) работа с несколькими вещественными переменными одинаковой длины, которые занимают в сумме 8 байт;
- г) работа с одной вещественной переменной, объём которой 8 байт;
- д) нет таких регистров в архитектуре процессоров х86;
- е) работа с одной вещественной переменной, объём которой 10 байт;
- 2. Косвенный переход на метку в другом сегменте кода:
- +a) имеет модификатор dword ptr;
- б) имеет модификатор word ptr;
- в) имеет модификатор far ptr;
- г) имеет модификатор near ptr;
- +д) изменяет содержимое регистров сѕ и ір;
- е) изменяет содержимое только регистра сs;
- ж) изменяет содержимое только регистра ір;
- +3) предполагает использование адреса перехода, записанного в какой -либо из регистров;
- и) предполагает использование адреса перехода длиной в 4 байта;
- к) предполагает использование адреса перехода длиной в 3 байта;
- 3. Если при написании программы предполагается использование большого объёма данных, но малого объёма кода, то лучше всего использовать модель памяти:
- a) Tiny;
- б) Small;
- в) Medium;
- $+\Gamma$) Compact;
- д) Large;
- 4. Двумерный массив аггау в программе описан следующим образом аггау dw 10 dup (?), где элементы массива имеют размерность в 2 байта. Двумерный массив имеет размерность 2x5. При этом при обращении к элементу массива используются регистры esi столбцы в матрице и ebx –строки в матрице. Чтобы записать в регистр eax нулевой элемент третьей строки матрицы необходимо выполнить команды (см. рис. 1.1):

A) mov ebx,0	Б) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
add ebx,12	add ebx,3
mov eax,array[ebx][esi]	mov ax,array[ebx][esi]
B) mov ebx,0	Γ) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
add ebx,3	add ebx,12
mov ax,array[esi][ebx]	mov ax,array[ebx][esi]
Д) mov ebx,0	E) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
add ebx,3	add ebx,12
mov ax,array[ebx+esi]	mov ax,array[ebx,esi]
Ж) mov ebx,0	3) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,6	add ebx,3
add ebx,6	mov ax,array[ebx][esi]
mov ax,array[ebx][esi]	1 1000 1000000 10000000 1000000
И) mo	ov ebx,0
mo	v esi,0
	r eax,eax
	i ebx,3
mo	v ax,array[esi,ebx]

Рис. 1.1.

- a) a);
- б) б);
- B) B);
- +r) r);
- д) д);
- e) e);
- +ж)ж);
- 3) 3);
- и) и);
- 5. Двумерный массив аггау в программе описан следующим образом аггау dw 15 dup (?), где элементы массива имеют размерность в 2 байта. Двумерный массив имеет размерность 3x5. При этом при обращении к элементу массива используются регистры esi столбцы в матрице и ebx –строки в матрице. Чтобы записать в регистр eax второй элемент третьей строки матрицы необходимо выполнить команды (см. рис. 1.2):

A) mov ebx,0	Б) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,4	mov esi,2
add ebx,18	add ebx,3
mov ax,array[ebx][esi] +	mov ax,array[ebx][esi]
B) mov ebx,0	Γ) mov ebx,0
xor eax,eax	mov esi,0
mov esi,0	xor eax,eax
add ebx,22	mov esi,18
mov ax,array[ebx][esi] +	add ebx,4
AND THE CONTRACT OF THE PROPERTY OF THE PROPER	mov eax,array[ebx][esi]
Д) mov ebx,0	E) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,3	mov esi,18
add ebx,2	add ebx,4
mov ax,array[ebx+esi]	mov ax,array[ebx][esi] +
Ж) mov ebx,0	3) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,4	mov esi,4
add ebx,18	add ebx,18
mov ax,array[ebx,esi]	mov ax,array[esi,ebx]

Рис. 1.2.

- +a) a);
- б) б);
- +B) B);
- г) г);
- д) д);
- +e) e);
- ж) ж);
- 3) 3);

6. Двумерный массив аггау в программе описан следующим образом аггау dw 20 dup (?), где элементы массива имеют размерность в 2 байта. Двумерный массив имеет размерность 4x5. При этом при обращении к элементу массива используются регистры esi – столбцы в матрице и ebx –строки в матрице. Чтобы записать в регистр еах третий элемент третьей строки матрицы необходимо выполнить команды (см. рис. 1.3):

A) mov ebx,0	Б) mov ebx,0
mov esi,0	mov esi,0
mov esi,6	mov esi,24
add ebx,24	add ebx,6
mov eax,array[ebx][esi]	mov ax,array[ebx][esi]
B) mov ebx,0	Γ) mov ebx,0
mov esi,0	mov esi,0
mov esi,0	mov esi,0
add ebx,30	add ebx,30
mov ax,array[ebx][esi]	mov ax,array[ebx+esi]
Д) mov ebx,0	E) mov ebx,0
mov esi,0	mov esi,0
mov esi,6	mov esi,3
add ebx,24	add ebx,3
mov ax,array[ebx,esi]	mov ax,array[ebx][esi]
Ж) mov ebx,0	3) mov ebx,0
mov esi,0	mov esi,0
mov esi,3	mov esi,6
add ebx,3	add ebx,24
mov ax,array[esi,ebx]	mov ax,array[ebx][esi]

Рис. 1.3.

```
a) a);
+б) б);
+B) B);
г) г);
д) д);
e) e);
ж) ж);
+3) 3);
```

7. Двумерный массив аггау в программе описан следующим образом аггау dw 16 dup (?), где элементы массива имеют размерность в 2 байта. Двумерный массив имеет размерность 4х4. При этом при обращении к элементу массива используются регистры esi – столбцы в матрице и ebx –строки в матрице. Чтобы записать в регистр eax второй элемент третьей строки матрицы необходимо выполнить команды (см. рис. 1.4):

A) mov ebx,0	Б) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,4	mov esi,24
add ebx,24	add ebx,4
mov eax,array[ebx][esi]	mov ax,array[ebx][esi]
B) mov ebx,0	Γ) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,0	mov esi,0
add ebx,28	add ebx,28
mov ax,array[ebx][esi]	mov eax,array[ebx][esi]
Д) mov ebx,0	E) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,0	mov esi,4
add ebx,28	add ebx,24
mov ax,array[ebx+esi]	mov ax,array[ebx,esi]
Ж) mov ebx,0	3) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,3	mov esi,4
add ebx,2	add ebx,24
mov ax,array[ebx][esi]	mov ax,array[ebx][esi]

Рис. 1.4.

a) a); +б) б); +в) в); г) г); д) д); e) e); ж) ж); +3) 3);

8. Двумерный массив аггау в программе описан следующим образом аггау dw 6 dup (?), где элементы массива имеют размерность в 2 байта. Двумерный массив имеет размерность 2х3. При этом при обращении к элементу массива используются регистры esi — столбцы в матрице и ebx —строки в матрице. Чтобы записать в регистр eax первый элемент второй строки матрицы необходимо выполнить команды (см. рис. 1.5):

A) mov ebx,0	Б) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,10	mov esi,1
add ebx,0	add ebx,2
mov eax,array[ebx][esi]	mov ax,array[ebx][esi]
B) mov ebx,0	Γ) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,10	mov esi,2
add ebx,0	add ebx,1
mov ax,array[ebx][esi]	mov eax,array[ebx][esi]
Д) mov ebx,0	E) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,1	mov esi,8
add ebx,2	add ebx,2
mov ax,array[ebx+esi]	mov ax,array[ebx,esi]
Ж) mov ebx,0	3) mov ebx,0
mov esi,0	mov esi,0
xor eax,eax	xor eax,eax
mov esi,8	mov esi,0
add ebx,2	add ebx,2
mov ax,array[ebx][esi]	mov ax,array[ebx][esi]

Рис. 1.5.

- a) a); δ) δ); +B) B); + Γ) Γ); Д) Д); e) e); +ж) ж); + 3) 3);
- 9. Двумерный массив array в программе описан следующим образом array dw 18 dup (?), где элементы массива имеют размерность в 2 байта. Двумерный массив имеет размерность 6х3. При этом при обращении к элементу массива используются регистры esi столбцы в матрице и ebx –строки в матрице. Чтобы записать в регистр eax четвёртый элемент второй строки матрицы необходимо выполнить команды (см. рис. 1.6):

Б) mov ebx,0
mov esi,0
xor eax,eax
mov esi,0
add ebx,32
mov eax,array[ebx][esi]
Γ) mov ebx,0
mov esi,0
xor eax,eax
mov esi,0
add ebx,32
mov ax,array[ebx][esi]
E) mov ebx,0
mov esi,0
xor eax,eax
mov esi,4
add ebx,2
mov ax,array[ebx+esi]
3) mov ebx,0
mov esi,0
xor eax,eax
mov esi,32
add ebx,0
mov ax,array[ebx,esi]
ov ebx,0
ov esi,0
or eax,eax
ov esi,0
ld ebx,8
ov ax,array[ebx][esi]
1

Рис. 1.6.

- a) a);
- б) б);
- в) в);
- +r) r);
- д) д);
- e) e);
- +ж) ж);
- 3) 3);
- и) и);
- 10) TASM поддерживает следующие сложные типы данных:
- +а) массивы;
- +б) структуры;
- +в) объединения;
- **+**г) записи;
- д) объекты;
- е) директивы;
- 11) Если описать одномерный массив следующим образом: mas dd 5 dup (0). Какой объём памяти в данном случае будет выделен под массив?
- а) 5 байт;
- б) 4 байта;
- в) 10 байт;
- г) 9 байт;
- +д) 20 байт;
- е) 19 байт;

- 12) Задать двумерный массив в ассемблере можно следующим образом:
- a) mas array [0..m,0..n];
- б) mas array [1..m,1..n];
- в) mas db [ebx][esi];
- $+\Gamma$) mas db 23,4,5,67,5,6,7,99,67,8,9,23,87,9,0,8;
- +д) mas dw 5 dup (?);
- 13) Адрес элемента (i,j) в двумерном массиве можно определить следующим образом:
- +а) (база + количество_элементов_в_строке * размер_элемента * i+j*размер элемента);
- б) (база+смещение + количество_элементов_в_строке * размер_элемента * i+j**размер элемента);
- в) (смещение + количество элементов в строке * размер элемента * i+j);
- г) (база + количество_элементов_в_строке+смещение * размер_элемента * i+j*размер элемента);
- д) (смещение + количество элементов в строке +база* размер элемента * i+j);
- 14) Для использования структур в программе необходимо обязательно выполнить:
- +а) задать шаблон структуры;
- +б) определить экземпляр структуры; +
- +в) организовать обращение к элементам структуры; +
- г) удалить экземпляр структуры после использования его в программе;
- д) удалить шаблон структуры;
- 15) С помощью оператора type можно:
- +а) определить объём памяти, выделяемый под один элемент структуры;
- б) определить объём памяти, выделяемый под массив структур;
- +в) организовать индексацию в массиве структур;
- г) обратиться к элементу структуры в виде (адресное_выражение) type (имя поля структуры);
- 16) Для того, чтобы объявить транслятору о том, что в программе имеется процедура, которая используется в другом модуле необходимо использовать директивы:
- +a) extrn и public;
- б) enter и leave;
- в) far и near;
- 17) Если необходимо собрать два модуля, например modul1.asm и modul2.asm в один исполняемый модуль, необходимо:
- +a) выполнить трансляцию модуля modul1.asm и получить объектный модуль modul1.obj;
- +б) выполнить трансляцию модуля modul2.asm и получить объектный модуль modul2.obj;
- +в) скомпановать программу утилитой TLINK командной строкой вида tlink /v modul1.obj+ modul2.obj;
- г) скомпановать программу утилитой TLINK командной строкой вида tlink /C modul1.obj+ modul2.obj;
- д) скомпановать программу утилитой TLINK командной строкой вида tlink /C modul1.obj and modul2.obj;
- 18) Пролог в процедуре необходим для:
- +а) инициализации регистра bp;
- б) инициализации регистра sp;
- +в) для доступа к переданным в процедуру аргументам через стек;
- г) для того, чтобы правильно записать эпилог в конце процедуры;

- 19) Если в процедуру типа near были переданы через стек аргументы, то для доступа в процедуре к последнему переданному аргументу необходимо:
- +а) сместиться от содержимого bp на 4 байта; +
- б) сместиться от содержимого bp на 6 байта;
- в) сместиться от содержимого bp на 8 байта;
- г) сместиться от содержимого bp на 2 байта;
- 20) Команда ret n необходима для:
- +а) очистки стека от аргументов, которые передавались в процедуру;
- б) обращения к n-ому аргументу, который передавался через стек;
- в) передачи аргументов в процедуру по их адресу;
- б) типовые практические задания:

Задание 1

Требуется написать код прерывания выполняющий чтение 20 байт из порта с адресом 80. Критерии выполнения заданий 3

Задание считается выполненным, если обучающийся представил корректный код на языке ассемблера.

Задание 2

Требуется написать код прерывания выполняющий инверсию значений двумерного массива типа byte. Код должен быть оформлен как процедура с тремя параметрами (начальный адрес, ширина и высота массива данных).

Критерии выполнения заданий 3

Задание считается выполненным, если обучающийся представил корректный код на языке ассемблера.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Костров Борис Васильевич, Заведующий кафедрой ЭВМ

24.06.25 10:39 (MSK)

Простая подпись