ПРИЛОЖЕНИЕ 1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра радиотехнических систем

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине (модулю)

«Схемотехника АЭУ»

Направление подготовки

11.03.01 «Радиотехника»

Направленность (профиль) подготовки

Радиотехнические системы локации, навигации и телевидения Беспроводные технологии в радиотехнических системах и устройствах Радиофотоника

Аппаратно-программная инженерия радиолокационных и навигационных систем Программно-аппаратные средства систем радиомониторинга и радиоэлектронной борьбы

Уровень подготовки

<u>бакалавриат</u>

Программа подготовки

<u>бакалавриат</u>

Квалификация выпускника – бакалавр

Формы обучения – очная; заочная

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Оценочные материалы – это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на практических занятиях и лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено — не зачтено». Количество лабораторных работ по каждому модулю определено графиком, утвержденным заведующим кафедрой. На практических занятиях используется система «зачтено — не зачтено».

Промежуточный контроль по дисциплине осуществляется проведением экзамена по первой части дисциплины и теоретическим зачетом по второй.

Паспорт оценочных материалов по дисциплине

No	Контролируемые разделы	Код контролируемой	Вид, метод, форма
п/п	(темы) дисциплины	компетенции (или её	оценочного
		части)	мероприятия
1	2	3	4
1	Введение	ОПК-2	Экзамен
2	Основные показатели	ОПК-2	Решение задач,
	усилительного устройства	OHK-2	экзамен

3	Графоаналитический анализ работы усилительного каскада с использованием ВАХ активного элемента.	ОПК-2	Решение задач, экзамен
4	Отрицательная обратная связь в усилителях.	ОПК-2	Экзамен
5	Анализ работы в линейном режиме усилительного каскада с резистивной нагрузкой при различных схемах включения транзистора	ОПК-2	Решение задач, зачет по лабораторной работе, экзамен
6	Обеспечение и стабилизация режима работы усилительного каскада по постоянному току.	ОПК-2	Экзамен
7	Каскады предварительного усиления	ОПК-2	Решение задач, экзамен
8	Широкополосные каскады усиления.	ОПК-2	Экзамен
9	Выходные каскады усиления.	ОПК-2	Решение задач, зачет по лабораторной работе, экзамен
10	Усилители постоянного тока	ОПК-2	Экзамен
11	Операционные усилители и функциональные устройства на их основе.	ОПК-2	Решение задач, зачет по лабораторной работе, экзамен
12	Устройства обработки сигналов на основе аналоговых перемножителей.	ОПК-2	Решение задач, экзамен

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.

- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме шкалы оценивания:

«Отлично» заслуживает обнаруживший студент, всестороннее, систематическое и глубокое знание учебно-программного материала, умение предусмотренные свободно выполнять задания, программой, дополнительной основную знакомый c литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания учебно-программного материала в объеме, необходимом дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной рекомендованной программой. Как литературой, правило, «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

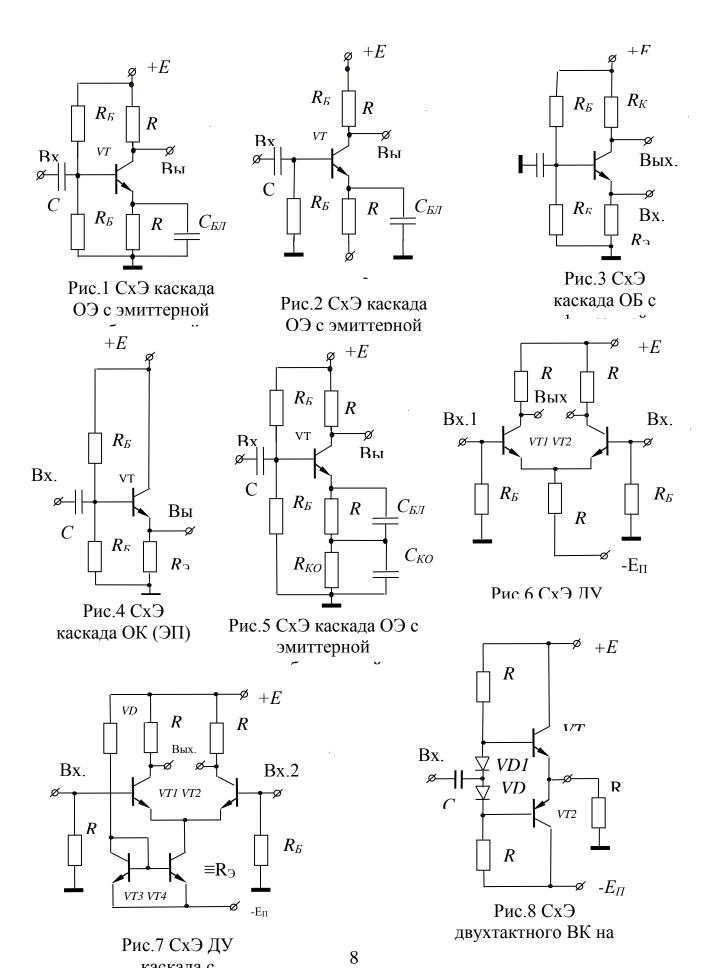
Типовые контрольные задания или иные материалы Экзаменационные вопросы

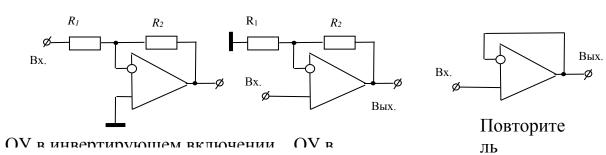
- 1. Усилитель, как четырехполюсник, передаточная функция и частотный коэффициент передачи однополюсного усилителя.
- 2. Амплитудно-частотная (AЧX) и фазочастотная (ФЧX) характеристики. Логарифмическая AЧX. Линейные частотные искажения. Амплитудно-фазовая характеристика.
- 3. Переходная характеристика (ПХ). Линейные искажения ПХ в области малых и больших времен. Связь между линейными частотными искажениями и искажениями переходной характеристики.
- 4. Амплитудная характеристика. Динамический диапазон входного сигнала. Нелинейные искажения и их оценка (коэффициент гармоник).
- 5. Обратная связь и ее разновидности. Передаточная функция усилителя, охваченного обратной связью (ОС). Положительная и отрицательная ОС. Параметры и свойства ООС (глубина ОС, передаточная функция усилителя, охваченного глубокой ООС).
- 6. О.С. Н-типа, эквивалентная схема усилителя, охваченного ООС Н-типа. Анализ влияния ООС Н-типа на параметры усилителя ($K_E K_U$, , K_I , R_{BX} , R_{BbIX} , частотные свойства). Анализ влияния Z_{Γ} и Z_H на действие ООС Н-типа.
- 7. О.С. У-типа эквивалентная схема усилителя, охваченного ООС У-типа. Анализ влияния ООС У-типа на параметры усилителя (K_U , K_E , K_I , R_{BX} , R_{BMX} , частотные свойства). Анализ влияния Z_Γ и Z_H на действие ООС У-типа.
- 8. О.С. Z-типа, эквивалентная схема усилителя, охваченного ООС Z-типа. Анализ влияния ООС Z-типа на параметры усилителя (K_U , K_E , K_I , R_{BX} , R_{BMX} , частотные свойства). Анализ влияния Z_{Γ} и Z_H на действие ООС Z-типа.
- 9. Физическая эквивалентная схема Джиоколетто. Ее модификация с учетом эффекта Миллера.
- 10. Каскад ОЭ с резистивной нагрузкой. Схема, свойства, параметры (($K_E(j\omega)$, K_U , K_L , $Z_{BX}(j\omega)$., R_{BbIX}). Графики $K_U(\omega)$ и $\varphi(\omega)$.
- 12. Каскад ОБ с резистивной нагрузкой. Схема, свойства, параметры (K_U , K_I , K_E , Z_{BX} , $R_{BЫX}$), усилительного каскада с ОБ. Сравнение частотных свойств каскада ОБ и ОЭ.
- 13. Каскад ОК с резистивной нагрузкой. Схема, свойства, параметры (K_U , K_I , K_E , Z_{BX} , $R_{BЫX}$), усилительного каскада с ОК. Сравнение частотных свойств каскада ОК и ОЭ.
- 14. Дифференциальный усилительный каскад. Анализ его схемы при усилении синфазных и противофазных сигналов $[K_{(+)}, R_{BX(+)}, K_{(-)}, R_{BX(-)}]$.
- 15. Нагрузочная характеристика транзистора по постоянному и переменному токам. Выбор положения точки покоя в режимах A, B.
- 16. Три способа питания цепи базы транзистора (принцип функционирования схем с фиксацией тока базы, фиксацией потенциала базы, эмиттерной стабилизации).

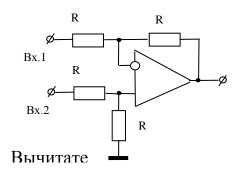
Цепи смещения дифференциального усилительного каскада. Схема "токового зеркала".

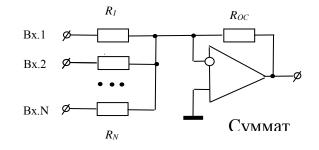
- 17. Каскад предварительного усиления (КПУ), принципиальная электрическая схема, назначение элементов.
- 18. Анализ работы каскада предварительного усиления в области средних, верхних и нижних частот.
- 19. Широкополосные каскады усиления. Анализ влияния частотно-независимой последовательной по току ООС (Z-типа) на частотные свойства каскада с ОЭ в области ВЧ
- 20. Анализ работы каскада с эмиттерной ВЧ коррекцией (в частотной и временной областях).
- 21. Графо-аналитический анализ работы резисторного ВК усилителя напряжения в режиме А. Энергетические показатели работы.
- 22. Графо-аналитический анализ работы двухтактного бестрансформаторного ВК в режиме В. Энергетические показатели работы.
- 23. Анализ схемы двухтактного усилителя мощности на комплементарных транзисторах с двухполярным и однополярным питанием.
- 24. Каскады сдвига уровня. Схемотехника УПТ. «Активная» нагрузка.
- 25. Операционный усилитель (определение, основные параметры). Правила анализа схем решающих усилителей на ОУ.
- 26. Быстродействие ОУ. АЧХ и ПХ малого и большого сигналов.
- 27. Анализ работы ОУ в инвертирующем и неинвертирующем включениях.
- 28. Анализ работы сумматора на ОУ и вычитателя на ОУ.
- 29. Анализ работы аналогового интегратора.
- 30. Анализ работы аналогового дифференциатора.
- 31. Анализ работы аналогового логарифматора.
- 32. Схемотехника ОУ ОСТ. Передаточная функция и АЧХ ОУ ОСТ.
- 33. Аналоговые перемножители сигналов, основные понятия. Анализ работы двухквадрантного АПС на дифференциальном делителе тока.
- 34.АПС -ячейка Гильберта.
- 35. Балансный модулятор. Квадратурный модулятор. Синхронный детектор.
- 36. Демодулятор АМ колебания. Демодулятор ЧМ колебания.

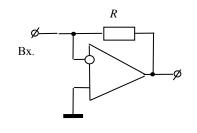
Сведения, которые необходимо знать наизусть

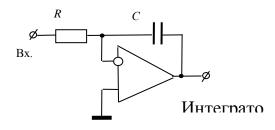

- 1. Коэффициент передачи по току в схеме с ОЭ $h_{219} = \frac{I_K}{I_E}$
- 2. Крутизна транзистора $S = \frac{\Delta I_K}{\Delta I_K} = \frac{h_{2I3}}{h_{II3}} \approx \frac{I_{K0}}{26 \bullet 10^{-3}}$ [A/B].
- 3. Коэффициент усиления каскада с ОЭ в области средних частот $K_0 = SR_K$.
- 4. Коэффициент усиления каскада с ОБ в области средних частот $K_0 \approx SR_K$.
- 5. Коэффициент усиления каскада с ОК (ЭП) в области средних частот $K_0 \le 1$.
- 6. Входное сопротивление каскада с ОЭ-

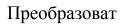

$$h_{119} = r_{E'} + r_{E'9} = r_{E'} + \frac{0,026}{I_{K0}} (1 + + h_{219})$$

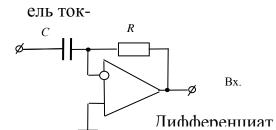

- 7. Входное сопротивление каскада с ОБ $h_{IIE} \approx \frac{1}{S}$
- 8. Входное сопротивление каскада с ОК $R_{BXOK} = h_{119} + (1 + h_{219}) R_H$.
- 9. Выходное сопротивление каскада с ОЭ $R_{BЫXO}$ $\approx R_H$.
- 10. Выходное сопротивление каскада с ОБ $R_{BЫХОБ} \approx R_H$.
- 11. Выходное сопротивление каскада с ОК $R_{BЫХОК} \approx \frac{1}{S}$.
- 12. Величина глубины отрицательной обратной связи (ООС) $F = 1 + \beta K_{\theta}$, где β коэффициент передачи четырехполюсника ОС (ЧПОС), K_{θ} коэффициент усиления усилителя без ОС в области СЧ.

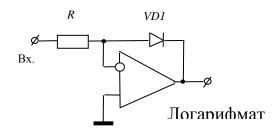

Уметь изобразить следующие схемы:


- 1. Каскад с ОЭ с эмиттерной стабилизацией (два варианта) (рис.1,2).
- 2. Каскад с ОБ с фиксацией потенциала базы (рис.3)
- 3.ЭП с фиксацией потенциала базы (рис.4)
- 4. Каскад с ОЭ с эмиттерной стабилизацией, эмиттерной ВЧ коррекцией (рис.5).
- 5.ДУ с сопротивлением R_{3} (рис.6)
- $6~\rm ДУ~c$ генератором тока I_0 (в виде токового зеркала) (рис.7)
- 7.Схема двухтактного бестрансформаторного ВК на комплементарных транзисторах (рис.8).
- 8.Схемы ОУ в инвертирующем вкл., в неинвертирующем вкл., повторителя напряжения.
- 9. Схемы сумматора, вычитателя, преобразователя «ток-напряжение».
- 10. Схемы интегратора, дифференциатора, логарифматора.









Перечень лабораторных работ и вопросов для контроля знаний при допуске и сдаче лабораторной работы

№ работы	Название лабораторной работы и вопросы для контроля	Шифр
1.	Исследование влияния отрицательной обратной связи на показатели усилительных устройств 1. Как определить понятия возвратное отношение и возвратная разность? Что является эквивалентом этих показателей в области СЧ? 2. При введении последовательной по входу ОС увеличился коэффициент усиления по напряжению и уменьшилось входное сопротивление. Какого знака ОС была реализована в усилителе? 3. Почему в качестве источника сигнала в усилителе с последовательной по входу ООС целесообразно использовать источник напряжения (э.д.с.)? 4. Почему в качестве источника сигнала в усилителе с параллельной по входу ООС целесообразно использовать источник тока? 5. Действие ООС каких типов приводит к стабилизации величины переменного выходного напряжения и почему? 6. Действие ООС каких типов приводит к стабилизации выходного тока и почему?	4306
	7. Для каких типов ООС характерно уменьшение сквозного коэффициента усиления по напряжению и почему? 8. Почему последовательная по входу ООС обеспечивает увеличение входного сопротивления усилителя, а параллельная по входу уменьшает? 9. Применением какой ООС — по напряжению или по току, можно добиться уменьшения выходного сопротивления усилителя и почему? 10. Почему уменьшаются нелинейные искажения усиливаемого сигнала при охвате усилителя петлей ООС?	
2.	Исследование нагрузкой при различных схемах включения биполярного транзистора 1. Пояснить назначение элементов в схемах усилителей, приведенных на рис.1, 2, 3. 2. Каковы возможные способы подключения транзистора в усилительном каскаде? 3. Чем объясняется эффект инверсии полярности входного сигнала в схеме каскада с ОЭ и почему таким эффектом не	4557

обладают каскады с ОБ и ОК?

- 4. В чем заключаются критерии выбора положения «точки покоя» в линейном режиме (режиме A) работы транзистора?
- 5. Будет ли изменяться коэффициент усиления по напряжению в схеме усилителя рис.1 при изменении величины RЭ и, если будет, то почему?
- 6. Что такое «эффект Миллера» и как он сказывается на частотных свойствах каскада ОЭ?
- 7. Почему «эффект Миллера» практически не проявляется в работе усилительных каскадов ОБ и ОК?
- 8. Какие показатели каскадов ОБ и ОК существенно лучше, а какие хуже по сравнению с параметрами каскада ОЭ и почему?

3. Исследование двухтактного каскада усилителя мощности

- 1. Каково назначение выходного каскада и в чем заключаются особенности его работы?
- 2. Что такое коэффициенты использования?
- 3. По каким критериям классифицируются ВК и какие разновидности его различают?
- 4. В чем сущность графоаналитического метода анализа работы BK?
- 5. В чем принципиальное отличие режимов работы А и В?
- 6. Как выбирается положение точки покоя транзистора ВК в режиме А? Провести графоаналитический анализ работы ВК в режиме А.
- 7. Какие энергетические показатели характеризуют работу ВК в режиме А? Вывести аналитические выражения этих показателей и отобразить их графически.

8. При каком условии сквозная BAX транзистора для анализа работы BK в режиме B может быть аппроксимирована ломаной прямой?

- 9. Зачем в каскаде, работающем в режиме В, вводится смещение базы транзистора? Какого вида искажения формы выходного колебания при этом устраняются?
- 10. Как выбирается положение точки покоя транзистора ВК в режиме В? Провести графоаналитический анализ работы ВК в режиме В.
- 11. Почему ВК, работающие в режиме В строятся по двухтактной схеме?
- 12. Чем объяснить, что при использовании двухтактной схемы через сопротивление нагрузки не протекает постоянный ток?
- 13. Какие энергетические показатели характеризуют работу ВК в

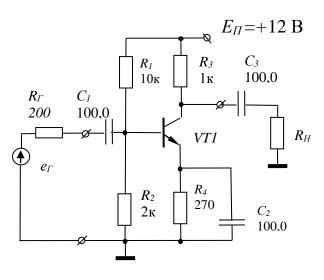
4484

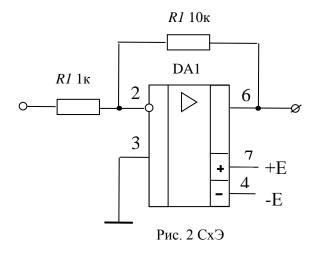
режиме В? Вывести аналитические выражения этих показателей	
и отобразить их графически.	
14. Как объяснить понятие режима АВ?	
15. Как объяснить наличие максимума в кривой зависимости	
полезной мощности в нагрузке от величины этой нагрузки?	
16. Зачем в схеме двухтактного ВК с одним источником питания	
устанавливается разделительный конденсатор между выходом	
ВК и нагрузкой? Из каких соображений выбирается величина	
ёмкости этого конденсатора?	
4. Исследование операционного усилителя	
1. На какую величину отличаются коэффициенты усиления	
масштабирующего усилителя в неинвертирующем и	
инвертирующем включениях?	
2. Каким элементом схемы определяется величина входного	
сопротивления масштабирующего усилителя в инвертирующем	
включении?	
3. Что такое «виртуальный нуль» и чем обусловлен этот эффект?	
4. Как определить входной ток масштабирующего усилителя в	
инвертирующем включении?	
5. На какие параметры и каким образом влияет охват ОУ (УПТ)	
цепью ООС?	4695
6. Чем объясняется ухудшение частотных свойств сумматора при	
увеличении числа суммируемых ЭДС?	
7. Почему при наличии постоянной составляющей во входном	
сигнале реальный аналоговый интегратор входит в режим	
насыщения?	
8. Как определить частотный диапазон работы аналогового	
интегратора?	
9. Как определить частотный диапазон работы аналогового	
дифференциатора?	
10. В чем заключается недостаток простейшей схемы	
аналогового логарифматора?	

План практических занятий

- 1. Показатели усилительного каскада с ОЭ.
- 2. Усилительный каскад с резистивной нагрузкой при различных схемах включения активного элемента
 - 3. Изучение усилителя с отрицательной обратной связью (ООС)
- 4. Функциональные устройства на основе операционного усилителя (ОУ) и аналогового перемножителя (АПС)

Типовые задачи для практических занятий Тема: "Показатели усилительного каскада с ОЭ"




Рис. 1 СхЭ каскада ОЭ

Задание:

- анализ схемы реального усилительного целью каскада c определения ряда его показателей: коэффициента усиления области В средних частот (КО), логарифмической амплитудно-частотной ГЛАЧХ $G(\omega)$ и ГФЧХ фазочастотной $\varphi(\omega)$ характеристик, переходных характеристик (ПХ) в области малых больших (MB) (BB) времен, амплитудной характеристики (АХ);
- графическое построение вышеприведенных характеристик;
 - проведение имитационного

моделиро-вания работы реального усилительного каскада в среде MicroCap

Тема: "Усилительный каскад с резистивной нагрузкой при различных схемах включения активного элемента"

Задание:

- используя графоаналитический метод анализа и параметры транзистора VT1, рассчитать по прилагаемой выходной BAX режимы работы по постоянному и переменному току схемы рис.1:
- определить параметры точки покоя в режиме A;
- нанести нагрузочную прямую по переменному току и оценить величину максимального размаха выходного сигнала (U2max).

Тема: "Изучение усилителя с отрицательной обратной связью (ООС)" Залание:

- изобразить структурную схему (СхС) двухкаскадного усилителя, в котором использованы местные и общая ОС.
- Тема: " Функциональные устройства на основе операционного усилителя (ОУ) и аналогового перемножителя (АПС)"

Задание:

- на рис. 2 приведена СхЭ принципиальная масштабирующего усилителя,

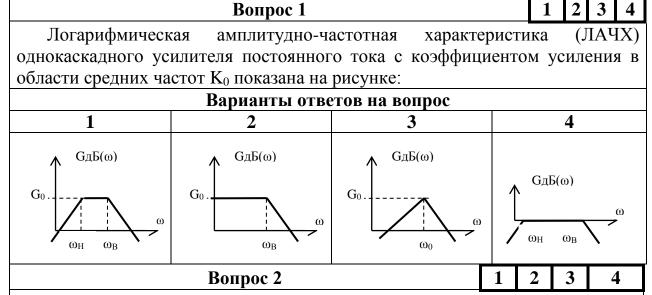
реализованного на операционном усилителе (ОУ) К140УД26 с параметрами К0= 2 105, f1 = 2 107 Гц, RBЫХ = 50 Ом. Требуется рассчитать параметры усилителя: коэффициент усиления КИ, входное сопротивление RBX, полосу пропускания по уровню MB = 0,707.

Темы курсовых работ. типовое задание

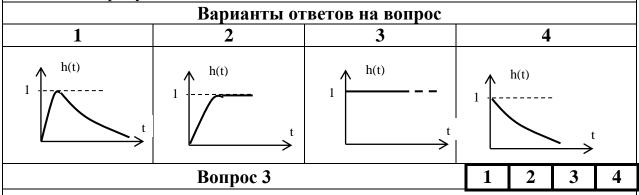
No	Наименование темы	
1	Широкополосный усилитель	
2	Усилитель сигнала звуковых частот	
3	Усилитель предмодулятора	

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИСТЕТ

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ


по дисциплине «Сх АЭУ»

~		циплине «Сх Аз		T	
Студент			группа		
1. Тем	1 3				
	представления к защите	XX xxxxxx	х 20ХХ года		
3. Исхо,	дные данные для проектирования				
№ п/п	Наименование данных	Обозначение	Количество	Единица изм.	
3.1.	Выходное напряжение	Ивых (размах)		Вольт	
3.2.	Коэффициент усиления	KU		-	
3.3.	Диапазон рабочих частот	fHfB		Гц	
3.4.	Источник сигнала	RΓ		Ом	
3.5.	Выходная нагрузка	RH		Ом	
	Искажения выходного сигнала:				
3.6.	линейные	MH		дБ	
ı		MB		дБ	
	нелинейные, не более	kΓ		%	
3.7.	Отношение сигнал/шум, не менее	q		дБ	
	Регулировка усиления:				
3.8.	ступенчатая	через ХХ дБ		дБ	
	плавная	0		дБ	
3.9.	Источники питания			В	
	выбираются из стандартного ряда: =	\pm 5; \pm 6; \pm 12; \pm 15			
3.10.	Условия эксплуатации	нормальные		•	
3.11.	Объем производства	мелкосерийный			
3.12.	Дополнительные требования				
4.	Содержание пояснительной записки	И			
4.1.	Введение				
4.2.	Эскизный расчет усилителя				
4.3.	Разработка электрической принцип	иальной схемы (Сх	Э) усилителя		
4.4.	Заключение	•			
4.5.	Библиографический список				
4.6.	Приложение – Перечень элементов	(ЄП)			
5.	Перечень графического материала.				
5.1.	1 лист формата A2 (A3) – СхЭ прин	ципиальная			
	, , , , ,	•			
I	Руководитель работы				
1	1	пата		шпип ишишипп	


Руководитель работы		
-	подпись, дата	фамилия, инициалы
Задание принял к исполнению .		-
подп	ись, дата	фамилия, инициалы

Контрольные вопросы для оценки сформулированности компетенций . II.1 ОПК-2.1,2.2

Тестовые задания (при выполнении задания поставить знак «х» в выделенную жирной линией клеточку, номер которой соответствует номеру выбранного ответа)

Переходная характеристика в области малых и больших времен (МВ и БВ) однокаскадного усилителя переменного тока с резистивной нагрузкой показана на рисунке:

Какой сигнал надо подавать на вход усилителя, чтобы измерить его амплитудную характеристику (AX)?

	Варианты ответов на вопрос						
1 2		3	4 Последовательность				
Линейно	Гармонический Постоянное на- Последователь:						
возрас-	сигнал с частотой, пряжение вели-		прямоугольных импуль-				
тающее находящейся в чино		чиной 1 вольт.	сов различного размаха				
напря- диапазоне средних			с частотой, находящейся				
жение. частот АЧХ усили-			в диапазоне средних час-				
теля, с различными			тот АЧХ усилителя.				
	амплитудами.						

Вопрос 4

1 2

На входе усилителя действует гармонический сигнал с амплитудой 100 мВ, частотой f и нулевой начальной фазой. Усилитель работает в линейном режиме. Каковы будут параметры сигнала на выходе усилителя, если

значения АЧХ и ФЧХ на частоте f соответственно равны 10 и (-45°)

Варианты ответов на вопрос

	Dupmum Di Orbero	D na Bonpoe				
		3	4			
Параметры сигнала не изменятся	$U_{\text{MBHX}} = 10 \text{ B},$ $\phi_0 = 45^{\circ}$	$U_{\text{MBHX}} = 1 \text{ B},$ $\phi_0 = -45^{\text{O}}$	$U_{\text{MBHX}} = 1 \text{ B},$ $\phi_0 = -90^{\circ}$			

Вопрос 5

2 3 4

Двухкаскадный усилитель (транзисторы усилителя включены по схеме с ОЭ) охватили петлей последовательной по напряжению ООС (H — типа) с глубиной ОС F=10. Как изменятся параметры усилителя (коэффициент усиления по напряжению K_{UF} , коэффициент усиления по току K_{IF} , величины входного и выходного сопротивлений R_{BXF} и R_{BMXF} , полоса пропускания Δf_F)?

Варианты ответов на вопрос

	Daphanibi oibeio	D na bonpoc	
1	2	3	4
Параметры	K _{UF} и R _{BЫХF}	K _{UF} и R _{BXF}	K _{IF} и R _{ВЫХF}
усилителя не	уменьшатся в F	уменьшатся в F	уменьшатся
изменятся раз; R_{BXF} и Δf_F		раз; $R_{ m BMXF}$ и $\Delta f_{ m F}$	в F раз; R _{BXF}
	увеличатся в F раз;	увеличатся в F раз;	и Δf_F увели-
	K_{IF} не изменится.	K _{IF} не изменится	чатся в F раз;
			K _{UF} не изме-
			нится

Ответы на тестовые задания

Номер варианта	Номер правильного ответа
1	2
2	1
3	2
4	3
5	2

Контрольные вопросы с ответами

1. Вопрос. По какой формуле определяется коэффициент усиления в децибелах, если коэффициент усиления в разах K_0 ?

Ответ. 20 lg K₀.

2. Вопрос. Какие показатели усилительного устройства характеризуют его частотные характеристики?

Ответ. Амплитудно-частотная характеристика (AЧX), представляющая собой зависимость модуля частотного коэффициента передачи от частоты входного гармонического сигнала, с параметрами: коэффициент усиления в области средних (рабочих) частот K_0 , полоса пропускания ($\omega_B - \omega_H$) границы которой определяются по заданным отсчетным уровням коэффициента усиления; фазочастотная характеристика (ФЧХ) — зависимость аргумента частотного коэффициента передачи от частоты входного гармонического сигнала

3. Вопрос. Какие показатели усилительного устройства характеризуют его временные характеристики?

Ответ. Переходная характеристика (ПХ) в области малых (МВ) и больших (БВ) времен, представляющая реакцию усилителя на скачкообразное воздействие с параметрами: время установления ПХ МВ (t_{VCT}), спад ПХ БВ ($\pm \Delta$).

4. Вопрос. На входе однополюсного усилителя постоянного тока действует гармонический сигнал частотой $\omega >> \omega_B$ и амплитудой U_m . В чем отличие выходного сигнала от входного?

Ответ. Амплитуда выходного гармонического сигнала $U_{mBыX}=K(\omega_B)$ U_m , начальная фаза примерно -90°.

5. Вопрос. Назвать схемы включения биполярного транзистора в усилительном каскаде.

Ответ. С общим эмиттером ОЭ, с общей базой ОБ, с общим коллектором ОК.

6. Вопрос. Какими токами и напряжениями задаётся режим работы биполярного транзистора по постоянному току?

Ответ. Режим работы по постоянному току задается следующими токами и напряжениями: I_{K0} , $U_{K\ni 0}$, I_{E0} , $U_{E\ni 0}$

7. Вопрос. Маломощный биполярный транзистор имеет следующие параметры: r_{E^*} = 10 Ом, h_{2I3} = 200. Через транзистор, включенный по схеме с ОЭ, протекает ток покоя I_{K0} =10 мА. Какие значения величин имеют входное сопротивление транзистора и его крутизна?

Ответ. Входное сопротивление $h_{113} \approx r_{E^{-}} + [26\cdot10^{-3}/I_{K0}]\cdot h_{213} = 5$ кОм, крутизна транзистора $S = I_{K0} / 26\cdot10^{-3} \approx 0$, 4 А/В

8. Вопрос. При введении последовательной по входу ОС увеличился коэффициент усиления по напряжению и уменьшилось входное сопротивление. Какого знака ОС была реализована в усилителе?

Ответ. Положительная обратная связь (ПОС).

9. Вопрос. Каким образом изменяются частотные свойства усилителя при введении в усилитель последовательной по входу и параллельной по выходу отрицательной обратной связи?

Ответ. Расширяется полоса пропускания при одновременном уменьшении коэффициента усиления в области средних частот (СЧ).

10. Вопрос. Из каких соображений выбирается положение точки покоя в линейном режиме (режиме А) работы усилительного каскада?

Ответ. Положение точки покоя должно выбираться так, чтобы выходное напряжение не попадало в области насыщения и отсечки транзистора.

11. Вопрос. Что такое «эффект Миллера» и как он сказывается на частотных свойствах каскада ОЭ?

Ответ. «Эффектом Миллера» именуют явление существенного увеличения входной емкости транзистора в результате действия внутренней параллельной ООС по напряжению через емкость обратносмещенного перехода база-коллектор C_K .

И.2 ОПК-2.3

Тестовые задания (при выполнении задания поставить знак «х» в выделенную жирной линией клеточку, номер которой соответствует номеру выбранного ответа)

1BC1a)					_				
	Вопрос 9			1	2	3	4		
При одинаковой величине нагрузки наибольший сквозной коэффициент усиления по									
напряжению обеспечивает каскад:									
Варианты ответов на вопрос									
1 2 3 4									
с ОК	с ОБ	с ОЭ	диф	дифференциальный					
	Вопрос 10			1	2	3	4		
При одинаковой в	еличине резистивной на	грузки наибольшую	поло	ocv	проі	туска	ния.		
АЧХ обеспечивает каск		13		,	1	J			
	Варианты ответо	в на вопрос							
1	2	3			4				
с ОК	с ОБ	с ОЭ	диф	дифференциальный					
	Вопрос 11		1		2	3	4		
Для обеспечения необходимо:	режима усиления в ди	фференциальном ус	илит	гели	ьном	кась	аде		
	Варианты ответо	в на вопрос							
1	2	3				4			
подать на два его	обеспечить	подать на два	его	ПО	дать	сигна	ал		
входа одинаковые	соотношение	входа разнополярн		на	один	из е	ГО		
сигналы	R _K /R _Э >>1 при	сигналы одинаког	вой	BX	одов,	,			
	одинаковых входных	величины			вемли	łВ			
	сигналах			BT	орой				
	Вопрос 12		1		2	3	4		
Чтобы обеспечить	эффективную работу ка	скада с ОК (ЭП) нес	обхо,	дим	10 пр	едъя	вить		
следующие требовани	ия к величинам сопр	отивления источнин	ca c	сигі	нала	R_{Γ}	И		
сопротивлению нагрузи	ки R _H :								
	Варианты ответо	в на вопрос	1						
1	2	3			4				
$R_{\Gamma} \gg h_{113}, R_{H} \rightarrow 0$	$R_{\Gamma} = h_{113}, R_{H} \rightarrow 0$	$R_{\Gamma} \rightarrow 0, R_{H} \rightarrow \infty$	$R_{\Gamma} >> h_{113}, R_{H} >>$						
h_{119}									

				_		_	T		
	Вопрос 13				1	2	3	4	
Чтобы обеспечить эффективную работу каскада с ОБ необходимо предъявить									
следующие требования к величинам сопротивления источника сигнала R_{Γ} и									
сопротивлению нагрузки R _H :									
Варианты ответов на вопрос									
1	2		3	4					
$R_{\Gamma} \rightarrow 0, R_{H} \rightarrow \infty$	$R_{\Gamma} \rightarrow \infty, R_{H} \rightarrow 0$	$R_{\Gamma} >>$	$h_{113}, R_{H} >> h_{113}$		$R_{\Gamma} \gg h_{119}, R_{H} \rightarrow 0$				
Вопрос 14					1	2	3	4	
Чтобы получит	ь максимально плоску	ую АЧ	Х усилительного	кас	скада	а с эмі	иттерн	ой ВЧ	
коррекцией (с частотнозависимой последовательной по току ООС) необходимо обеспечить величину постоянной времени цепи коррекции равную									
Варианты ответов на вопрос									
1	2		3		4				
постоянной вре-	$R_{KOP}C_{KOP} = 10R_HC$	$C_H \mid R$	$R_{KOP}C_{KOP} = (R_HC_H)/2$		$R_{KOP}C_{KOP}=2R_HC_H$		R_HC_H		
мени цепи нагрузки									
$(R_{KOP}C_{KOP}=R_HC_H)$									
Вопрос 15					1	2	3	4	
Зависимость величины колебательной мощности в нагрузке двухтактного усилителя									
мощности от величины этой нагрузки соответствует графику рисунка:									
Варианты ответов на вопрос									
1	2		3				4		
$P_{H}(R_{H})$	$P_H(R_H)$		$P_H(R_H)$]	$P_H(R_H)$			
1	1	lack	\		lack				
R_{H}		$_{R_{\mathrm{H}}}$ ' \lfloor	\longrightarrow R	11				$R_{\rm H}$	
KII				·H			$\overline{}$	INH	
\longrightarrow $\kappa_{\rm H}$		 I		1					
→ KH	Вопрос 16			T	1	2	3	4	
,	Вопрос 16		,	игн		_			
Для эффектив		ого пр	реобразования с	ыгн	1 алов	_	3 перацио		
Для эффектив	Вопрос 16 ного функционально олжен отвечать следун	ого пр Ощим т	реобразования с	гигн		_			
Для эффектив	Вопрос 16 ного функционально олжен отвечать следун	ого пр Ощим т	реобразования с	SULH.		_			
Для эффектив	Вопрос 16 ного функционально олжен отвечать следун	ответо	реобразования с			OI	ерацио	онный	

Ответы на тестовые задания

Номер варианта	Номер правильного ответа
9	3, 4
10	3, 4
11	2
12	3, 4
13	3
14	2

15	2, 4
16	1

Контрольные вопросы с ответами

1. Вопрос. Какие элементы схемы рис. ІІ. 1

обусловливают появление линейных частотных искажений и в каких областях частот; соответственно линейных искажений переходной характеристики в областях МВ и БВ?

Ответ. Появление линейных частотных искажений в области НЧ и соответственно БВ обусловлены большими емкостями конденсаторов C_P и $C_{EЛЭ}$. Появление линейных частотных искажений в области ВЧ и соответственно МВ обусловлены инерционными свойствами транзистора и малой емкостью C_H .

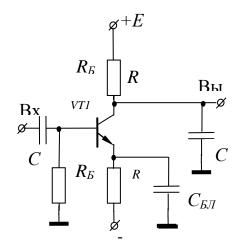


Рис.II.1 СхЭ каскада

2. Вопрос. Каково назначение эмиттерной ВЧ коррекции?

Ответ. Введение цепи эмиттерной ВЧ коррекции позволяет улучшить частотные свойства усилительного каскада, а именно увеличить полосу пропускания в области ВЧ.

- **3. Вопрос.** Пояснить принцип работы цепи эмиттерной ВЧ коррекции. **Ответ.** Цепь эмиттерной ВЧ коррекции представляет собой цепь частотно-зависимой ООС, величина глубины обратной связи F которой уменьшается с ростом частоты усиливаемого сигнала, что приводит к увеличению коэффициента усиления в области ВЧ.
- **4. Вопрос.** Как выбирается положение точки покоя транзистора усилителя мощности в режиме B?

Ответ. Положение точки покоя транзистора усилителя мощности в режиме В устанавливается при постоянном токе коллектора равным нулю.

5. Вопрос. Какой геометрической фигурой на выходной ВАХ транзистора отображается полезная мощность?

Ответ. Прямоугольный "треугольник мощности".

6. Вопрос. Почему усилители мощности работающие в режиме B, строятся по двухтактной схеме?

Ответ. Такое схемотехническое решение позволяет устранить в нагрузке усилителя сигналы четных гармоник и получить на выходе схемы гармоническое колебание при входном гармоническом сигнале.

7. Вопрос. На какую величину отличаются коэффициенты усиления масштабирующего усилителя в неинвертирующем (K_H) и инвертирующем включениях (K_H)

Ответ. $K_{HU} = K_{U} + 1$

8. Вопрос. Что такое эффект «виртуального нуля» и чем он обусловлен?

Ответ. Эффектом «виртуального нуля» называют явление того, что потенциал инвертирующего входа решающего усилителя (ОУ) стремится к нулю, при условии, что коэффициент усиления по напряжению ОУ стремится к бесконечности.

9. Вопрос. Что такое синхронный детектор и на каких устройствах он реализуется?

Ответ. Синхронный детектор предназначен для демодуляции балансно-модулированного колебания и состоит из аналогового перемножителя (АПС), генератора опорного колебания, фильтра нижних частот.

10. Вопрос. Какие устройства содержит структурная схема линейного демодулятора АМ колебания на АПС?

Ответ. Собственно АПС или балансный модулятор; устройство для снятия АМ модуляции, включающее усилитель АМ колебания и двусторонний ограничитель по максимуму; фильтр нижних частот для подавления сигнала с суммарной частотой.

Составил доцент кафедры РТС к.т.н., доцент

Ю.Н. Мамаев

Заведующий кафедрой РТС д.т.н., профессор

В.И. Кошелев