МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра «Радиоуправление и связь»

СОГЛАСОВАНО

УТВЕРЖДАЮ

Декан ФРТ

____ Холопов И.С. 2020 г.

Руководитель ОПОП

Кириллов С.Н.

2020 г.

Проректор по РОП и МД
Корячко А.В.
2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.ДВ.04.01 «Помехоустойчивые системы передачи информации»

Специальность

11.05.01 Радиоэлектронные системы и комплексы

Специализация

«Радиоэлектронные системы передачи информации»

Уровень подготовки специалитет

Квалификация выпускника – инженер

Форма обучения – очная

Рязань 2020 г.

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности)

11.05.01 «Радиоэлектронные системы и комплексы», утвержденного 09.02.2018 № 94

Разработчик доцент кафедры РУС

Дмитриев В.Т.

Рассмотрена и утверждена на заседании кафедры «26» ___06__ 2020 г., протокол № 9

Заведующий кафедрой РУС

Кириллов С.Н., д.т.н., проф.

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы специалитета

Коды	Содержание	Перечень планируемых результатов
компетенции	компетенций	обучения по дисциплине
ПСК 2.2	Способности	Знать: основные показатели
	оценивать основные	качества помехоустойчивых
	показатели качества	радиоэлектронных систем передачи
	систем передачи	информации.
	информации с учетом	Уметь:. оценивать основные
	характеристик каналов	показатели качества оптических
	связи	радиоэлектронных систем передачи
		информации с учетом
		характеристик каналов связи
		Владеть: методами оценки
		основных показателей качества
		оптических радиоэлектронных
		систем передачи информации
ПСК 2.3	Способностью	Знать: основные тенденции
	проводить	развития радиоэлектронных
	оптимизацию	оптических систем передачи
	радиосистем передачи	
	информации и	(модемов и кодеков).
	отдельных ее	<u>Уметь</u> : учитывать современные
	подсистем	тенденции развития
		радиоэлектронных оптических
		систем передачи информации и их
		подсистем (модемов и кодеков) в
		своей профессиональной
		деятельности.
		Владеть: навыками построения
		радиоэлектронных
		помехоустойчивых систем передачи
		информации и их подсистем
		(модемов и кодеков) с учетом
		современных тенденций.

2. Место дисциплины в структуре ООП специалитета

В дисциплине «Помехоустойчивые системы передачи информации» рассматривается структура, принципы построения и функционирования систем и устройств передачи и приема цифровых данных по оптическому волокну.

Цель учебной дисциплины «Помехоустойчивые системы передачи информации» - изучение принципов передачи информации по оптическому волокну (ОВ), основных свойств ОВ как среды распространения, элементов оптического тракта передачи, принципов формирования и приема оптических сигналов, изложение основных направлений развития данной области.

Задачи дисциплины:

- дать студенту глубокие и систематизированные знания об основных аспектах функционирования и расчета оптических систем передачи информации;
- ознакомить студента с особенностями, критериями и основными практическими приемами при проектировании оптических систем передачи информации;
- подготовить будущих инженеров для работы в области оптических систем передачи.

В результате изучения дисциплины студент должен:

- знать основные закономерности распространения света по оптическому волокну, основные параметры OB, типы OB;
- уметь рассчитывать возможную скорость передачи для заданного типа OB;
- знать основные свойства параметры источников излучения и приемников (фотодетекторов) оптического сигнала, методы формирования оптических сигналов;
- знать принципы построения цифровых, аналоговых, когерентных ВОСП и систем передачи с волновым уплотнением;
 - уметь оценивать основные параметры ВОСП;
 - знать принципы измерения параметров и диагностики ВОСП.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины (модуля) составляет 6 зачетных единиц (6 ЗЕ).

Семестр	7			
Недель	пь 16		Итого	
Вид занятий	уп	рп	уп	рп
Лекции	32	32	32	32
Практические	16	16	16	16

Лабораторные работы	16	16	16	16
Иная контактная работа	0,35	0,35	0,35	0,35
Итого ауд.	64,35	64,35	64,35	64,35
Сам. Работа	78,3	78,3	78,3	78,3
Часы на контроль	35,35	35,35	35,35	35,35
Итого	178	178	178	178

- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий.
- 4.1. Разделы дисциплины (модуля) и трудоемкость по видам учебных занятий (в академических часах)

№ п/п	Раздел дисциплины	Лекции	ЛР
	1 and our directions	(48	(24 часов)
		часов)	,
1	Глава 1. ПОТЕНЦИАЛЬНАЯ ЭФФЕКТИВНОСТЬ	4	
	СИСТЕМ ПЕРЕДАЧИ ИНФОРМАЦИИ		
2	Глава 2. ПОМЕХОУСТОЙЧИВОСТЬ И	4	
	ЭФФЕКТИВНОСТЬ СПИ ПРИ РАЗЛИЧНЫХ		
	ВИДАХ МОДУЛЯЦИИ		
3	ГЛАВА 3. ЭФФЕКТИВНОСТЬ СПДС С	4	4
	ПОМЕХОУСТОЙЧИВЫМ КОДИРОВАНИЕМ		
4	Глава 4. ОПТИМИЗАЦИЯ КАНАЛОВ В	8	4
	СИСТЕМАХ С ПОМЕХОУСТОЙЧИВЫМ		
	КОДИРОВАНИЕМ		
5	Глава 5. ЭФФЕКТИВНОСТЬ ПЕРЕДАЧИ	8	
	ДИСКРЕТНЫХ СИГНАЛОВ ПО КАНАЛАМ С		
	ОГРАНИЧЕННОЙ ПОЛОСОЙ ЧАСТОТ		
6	Глава 6. КВАЗИОПТИМАЛЬНЫЙ ПРИЕМ	8	
	ДИСКРЕТНЫХ СООБЩЕНИЙ В КАНАЛАХ С		
	ИСКАЖЕНИЯМИ		
7	Глава 7. ПРИЕМ ДИСКРЕТНЫХ СООБЩЕНИЙ В	8	4
	КАНАЛАХ С СОСРЕДОТОЧЕННЫМИ		
	ПОМЕХАМИ		
8	Глава 8. МЕТОДЫ СОКРАЩЕНИЯ	4	4
	ИЗБЫТОЧНОСТИ В СИСТЕМАХ ПЕРЕДАЧИ		
	ИНФОРМАЦИИ		

(разделам)

Введение

- Глава 1. ПОТЕНЦИАЛЬНАЯ ЭФФЕКТИВНОСТЬ СИСТЕМ ПЕРЕДАЧИ ИНФОРМАЦИИ
- 1.2. МЕТОДЫ ОПТИМИЗАЦИИ И КРИТЕРИИ ЭФФЕКТИВНОСТИ СПИ
- 1.3. ОПТИМИЗАЦИЯ СПИ ПО ИНФОРМАЦИОННЫМ КРИТЕРИЯМ
- 1.4. ПОТЕНЦИАЛЬНАЯ ЭФФЕКТИВНОСТЬ СИСТЕМ ПЕРЕДАЧИ ДВОИЧНЫМИ СИГНАЛАМИ
- 1.5. ВЕРОЯТНОСТЬ ОШИБКИ, УДЕЛЬНАЯ СКОРОСТЬ ПЕРЕДАЧИ И СЛОЖНОСТЬ СИСТЕМЫ
- Глава 2. ПОМЕХОУСТОЙЧИВОСТЬ И ЭФФЕКТИВНОСТЬ СПИ ПРИ РАЗЛИЧНЫХ ВИДАХ МОДУЛЯЦИИ
- 2.2. ПОМЕХОУСТОЙЧИВОСТЬ СИСТЕМ С МНОГОПОЗИЦИОННЫМИ СИГНАЛАМИ
- 2.3. АНСАМБЛИ ДВУМЕРНЫХ СИГНАЛОВ
- 2.4. ПОМЕХОУСТОЙЧИВОСТЬ ПРИЕМА ДВУМЕРНЫХ СИГНАЛОВ
- 2.5. МНОГОМЕРНЫЕ СИГНАЛЫ ПОВЕРХНОСТНО-СФЕРИЧЕСКОЙ УКЛАДКИ
- 2.5. МНОГОМЕРНЫЕ СИГНАЛЫ ОБЪЕМНО-СФЕРИЧЕСКОИ УКЛАДКИ
- 2.7. ЭФФЕКТИВНОСТЬ СИСТЕМ ПЕРЕДАЧИ ДИСКРЕТНЫХ СИГНАЛОВ ГЛАВА 3. ЭФФЕКТИВНОСТЬ СПДС С ПОМЕХОУСТОЙЧИВЫМ КОДИРОВАНИЕМ
- 3.1. МЕТОДЫ ПОМЕХОУСТОЙЧИВОГО КОДИРОВАНИЯ ПРИ ПЕРЕДАЧЕ ДИСКРЕТНЫХ СООБЩЕНИИ
- 3.2. ПОМЕХОУСТОЙЧИВОСТЬ ДЕКОДИРОВАНИЯ БЛОКОВЫХ КОДОВ
- 3.3. ПОМЕХОУСТОЙЧИВОСТЬ ДЕКОДИРОВАНИЯ СВЕРТОЧНЫХ КОДОВ
- 3.4. ЭФФЕКТИВНОСТЬ СИСТЕМ С КОРРЕКТИРУЮЩИМИ КОДАМИ
- Глава 4. ОПТИМИЗАЦИЯ КАНАЛОВ В СИСТЕМАХ С ПОМЕХОУСТОЙЧИВЫМ КОДИРОВАНИЕМ
- 4.1. СОГЛАСОВАНИЕ КАНАЛОВ, МОДЕМОВ И КОДЕКОВ
- 4.2. АЛГЕБРАИЧЕСКАЯ МОДЕЛЬ КАНАЛА С КОГЕРЕНТНОЙ ОФМ
- 4.3. СТАТИСТИКА ОШИБОК В КАНАЛАХ С ОФМ
- 4.4. ПОМЕХОУСТОЙЧИВОЕ КОДИРОВАНИЕ В КАНАЛАХ С НЕОДНОЗНАЧНОСТЬЮ ФАЗЫ
- 4.5. КОДЫ, ПРОЗРАЧНЫЕ К НЕОДНОЗНАЧНОСТИ ФАЗЫ В КАНАЛЕ
- 4.6. ОПТИМИЗАЦИЯ КАНАЛОВ ПО ИНФОРМАЦИОННЫМ КРИТЕРИЯМ
- 4.7. ЭФФЕКТИВНОСТЬ ПОМЕХОУСТОЙЧИВОГО КОДИРОВАНИЯ В КАНАЛАХ С МНОГОПОЗИЦИОННЫМИ СИГНАЛАМИ
- Глава 5. ЭФФЕКТИВНОСТЬ ПЕРЕДАЧИ ДИСКРЕТНЫХ СИГНАЛОВ ПО КАНАЛАМ С ОГРАНИЧЕННОЙ ПОЛОСОЙ ЧАСТОТ
- 5.1. МЕЖСИМВОЛЬНАЯ ИНТЕРФЕРЕНЦИЯ ПРИ ПЕРЕДАЧЕ ДИСКРЕТНЫХ СИГНАЛОВ
- 5.2. ОЦЕНКА ЭФФЕКТИВНОСТИ СПИ С МЕЖСИМВОЛЬНЫМИ И МЕЖКАНАЛЬНЫМИ ПОМЕХАМИ
- 5.3. ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ТРАКТА ПЕРЕДАЧИ ПРИ

ИСПОЛЬЗОВАНИИ ТИПОВЫХ ФИЛЬТРОВ

- 5.4. ОПТИМАЛЬНАЯ ОБРАБОТКА ДИСКРЕТНЫХ СИГНАЛОВ В КАНАЛАХ С МСИ
- 5.5. ОБРАБОТКА ДИСКРЕТНЫХ СИГНАЛОВ В КАНАЛАХ С НЕЛИНЕЙНОСТЬЮ
- Глава 6. КВАЗИОПТИМАЛЬНЫЙ ПРИЕМ ДИСКРЕТНЫХ СООБЩЕНИЙ В КАНАЛАХ С ИСКАЖЕНИЯМИ
- 6.1. ОПТИМИЗАЦИЯ УСТРОЙСТВ ОБРАБОТКИ СИГНАЛОВ В КАНАЛАХ С ИСКАЖЕНИЯМИ
- 6.2. СИНТЕЗ ВЕСОВЫХ ФУНКЦИЙ ПРИ КОРРЕЛЯЦИОННОМ ПРИЕМЕ
- 6.3. СИНТЕЗ АДАПТИВНЫХ МНОГОПОЗИЦИОННЫХ СИСТЕМ
- 6.4. МИНИМИЗАЦИЯ ПЕРЕХОДНЫХ ПОМЕХ В МНОГОКАНАЛЬНЫХ СИСТЕМАХ ПЕРЕДАЧИ
- 6.5. СИНТЕЗ СИГНАЛОВ КОНЕЧНОЙ ПРОДОЛЖИТЕЛЬНОСТИ В ЗАДАННОЙ ПОЛОСЕ ЧАСТОТ И МИНИМАЛЬНОЙ ЭНЕРГИИ ВНЕ ЭТОЙ ПОЛОСЫ
- Глава 7. ПРИЕМ ДИСКРЕТНЫХ СООБЩЕНИЙ В КАНАЛАХ С СОСРЕДОТОЧЕННЫМИ ПОМЕХАМИ
- 7.1. СОВРЕМЕННОЕ СОСТОЯНИЕ ВОПРОСА БОРЬБЫ С СОСРЕДОТОЧЕННЫМИ ПО СПЕКТРУ ПОМЕХАМИ
- 7.2. МОДЕЛИ СИГНАЛОВ И ПОМЕХ
- 7.3. МЕТОД СИНТЕЗА АЛГОРИТМОВ ПРИЕМА С ОБУЧЕНИЕМ ПО СП
- 7.4. АЛГОРИТМЫ РАЗНЕСЕННОГО ПРИЕМА С ОБУЧЕНИЕМ ПО СП
- 7.5. ПОМЕХОУСТОЙЧИВОСТЬ КОГЕРЕНТНОГО РАЗНЕСЕННОГО ПРИЕМА С ОБУЧЕНИЕМ ПО СОСРЕДОТОЧЕННЫМ ПОМЕХАМ
- 7.6. ПОМЕХОУСТОЙЧИВОСТЬ НЕКОГЕРЕНТНОГО РАЗНЕСЕННОГО ПРИЕМА С КОГЕРЕНТНЫМ СЛОЖЕНИЕМ СИГНАЛОВ
- 7.7. ПОМЕХОУСТОЙЧИВОСТЬ НЕКОГЕРЕНТНОГО РАЗНЕСЕННОГО ПРИЕМА С ОБУЧЕНИЕМ ПО СОСРЕДОТОЧЕННЫМ ПОМЕХАМ
- Глава 8. МЕТОДЫ СОКРАЩЕНИЯ ИЗБЫТОЧНОСТИ В СИСТЕМАХ ПЕРЕДАЧИ ИНФОРМАЦИИ
- 8.1. ИЗБЫТОЧНОСТЬ ИСТОЧНИКА И ЭФФЕКТИВНОСТЬ СПИ
- 8.2. ИНФОРМАЦИОННЫЕ ХАРАКТЕРИСТИКИ ИСТОЧНИКА ДИСКРЕТНЫХ СООБЩЕНИЙ
- 8.3. КОДИРОВАНИЕ СООБЩЕНИЙ С ЗАДАННОЙ МЕРОЙ ВЕРНОСТИ
- 8.4. СОВМЕСТНОЕ КОДИРОВАНИЕ ДЛЯ ИСТОЧНИКА И КАНАЛА
- 8.5. ИНФОРМАЦИОННЫЕ ХАРАКТЕРИСТИКИ ИСТОЧНИКА НЕПРЕРЫВНЫХ СООБЩЕНИЙ
- 8.6. ЦИФРОВОЕ КОДИРОВАНИЕ НЕПРЕРЫВНЫХ СООБЩЕНИЙ
- 8.7. ЦИФРОВОЕ КОДИРОВАНИЕ С ПРЕДСКАЗАНИЕМ
- 8.8. СПЛАЙН-ИНТЕРПОЛЯЦИЯ ЗАКЛЮЧЕНИЕ

$N_{\underline{0}}N_{\underline{0}}$	Номер	
Π/Π	раздела	Наименование лабораторных работ
	дисциплины	
$N_{\underline{0}}$	Раздел	Наименование лабораторных работ
1	4	Исследование характеристик ПОМ и ПРОМ цифровых систем
		передачи
2	5	Изучение характеристик аналоговой ВОЛС
3	7	Измерение характеристик оптического разветвителя
4	8	Измерение режима модуляции лазера

4.4 Самостоятельная работа студентов (52 часа)

Перечисленные ниже темы студент изучает самостоятельно по рекомендуемой литературе.

- 1. Пассивные оптические элементы (разъемы, розетки, аттенюаторы, циркуляторы и др.) (10 часов).
- 2. Основные характеристики и маркировка современных оптических кабелей (12 часов).
- 3. Проектирование атмосферных оптических линий связи (10 часов).
- 4. Технологии прокладки ВОЛС с учетом характеристик грунта (10 часов)
- 5. Технология эксплуатации ВОЛС (10 часов)

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

- 1. Учебное пособие в компьютерном варианте по WDM системам.
- 2. Материалы межфакультетской лаборатории по волоконно-оптической технике.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине представлен в виде оценочных материалов и приведен в Приложении.

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

А) основная литература

- 1. Носов В.И. Помехоустойчивость передачи цифровых сигналов по стволам аналоговых радиорелейных линий [Электронный ресурс]: монография / В.И. Носов, М.Г. Кокорич. Электрон. текстовые данные. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2009. 125 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/40543.html
- 2. Горячкин О.В. Теория информации и кодирования. Часть 1. Теория потенциальной помехоустойчивости [Электронный ресурс]: учебное пособие / О.В. Горячкин. Электрон. текстовые данные. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2017. 94 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/77235.html
- 3. Сборник задач по дисциплине Помехоустойчивое кодирование. Часть 2 [Электронный ресурс] / . Электрон. текстовые данные. М.: Московский технический университет связи и информатики, 2011. 21 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/63347.html
- 4. Носов В.И. Исследование методов повышения помехоустойчивости короткоимпульсных сверхширокополосных систем радиосвязи [Электронный ресурс]: монография / В.И. Носов, В.О. Калинин. Электрон. текстовые данные. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2017. 245 с. 978-5-91434-040-4. Режим доступа: http://www.iprbookshop.ru/74669.html

Б) дополнительная литература

- 1. Макаров С.Б., Цикин И.А. Передача дискретных сообщений по радиоканалам с ограниченной полосой пропускания. М.: Радио и связь, 1988.-304 с.
- 2. Тихонов В.И. Статистическая радиотехника. 2-е изд., перераб. и доп. М.: Радио и связь, 1982. 624 с.
- 3. Быков В.В. Цифровое моделирование в статистической радиотехнике.- М.: Изд-во Советское радио, 1971. 328 с.

8. Перечень ресурсов информационно—телекоммуникационной сети «Интернет»,

необходимых для изучения дисциплины

Обучающимся предоставлена возможность индивидуального доступа к следующим электронно-библиотечным системам.

- 1. Электронно-библиотечная система «Лань», режим доступа с любого компьютера РГРТУ без пароля. URL: https://e.lanbook.com/
- 2. Электронно-библиотечная система «IPRbooks», режим доступа с любого компьютера РГРТУ без пароля, из сети интернет по паролю. –

9. Методические указания для обучающихся по освоению дисциплины

Работа студента на лекции

Только слушать лекцию и записывать за лектором все, что он говорит, недостаточно. В процессе лекционного занятия студент должен выделять важные моменты, выводы, анализировать основные положения. Прослушанный материал лекции студент должен проработать. От того, насколько эффективно он это сделает, зависит и прочность усвоения знаний, и, соответственно, качество восприятия предстоящей лекции, так как он более целенаправленно будет её слушать. Необходим систематический труд в течение всего семестра.

При написании конспекта лекций следует придерживаться следующих правил и рекомендаций.

- 1. Конспект нужно записывать «своими словами» лишь после того, как излагаемый лектором тезис будет вами дослушан до конца и понят.
- 2. При конспектировании следует отмечать непонятные, на данном этапе, места; записывать те пояснения лектора, которые показались особенно важными.
- 3. При ведении конспекта рекомендуется вести нумерацию разделов, глав, формул (в случае, если лектор не заостряет на этом внимание); это позволит при подготовке к сдаче экзамена не запутаться в структуре лекционного материала.
- 4. Рекомендуется в каждом более или менее законченном пункте выразить свое мнение, комментарий, вывод.

При изучения лекционного материала у студента могут возникнуть вопросы. С ними следует обратиться к преподавателю после лекции.

В заключение следует отметить, что конспект каждый студент записываете лично для себя. Поэтому конспект надо писать так, чтобы им было удобно пользоваться.

Подготовка к практическим занятиям

Практические занятия по решению задач существенно дополняют лекции по физике. В процессе анализа и решения задач студенты расширяют и углубляют знания, полученные из лекционного курса и учебников, учатся глубже понимать физические законы и формулы, разбираться в их особенностях, границах применения, приобретают умение применять общие закономерности к конкретным случаям. В процессе решения задач вырабатываются навыки вычислений, работы со справочной литературой, таблицами. Решение задач не только способствует закреплению знаний и тренировке в применении изучаемых законов, но и формирует особый стиль умственной деятельности, особый метод подхода к физическим явлениям. Последнее тесным образом связано с методологий физики как науки.

В часы самостоятельной работы студенты должны решать задачи, с которыми они не успели решить во время аудиторных занятий, и те задачи,

которые не получились дома. Отсутствие спешки на таких занятиях (которая нередко бывает на учебных занятиях из-за недостатка времени и напряженности рабочего плана) несомненно должно дать положительный эффект.

Идея построения разделов физики на базе основных постулатов должна найти своё отражение и в содержании практических занятий по решению задач. Когда студенты решают задачи по определённой теме, очень важно, чтобы в результате знакомства с конкретными задачами они усвоили принципиальный подход к познанию достаточно широкого класса явлений.

Несмотря на различие в видах задач, их решение можно проводить по следующему общему плану (некоторые пункты плана могут выпадать в некоторых конкретных случаях), который надо продиктовать студентам:

- 1) прочесть внимательно условие задачи;
- 2) посмотреть, все ли термины в условиях задачи известны и понятны (если что-то неясно, следует обратиться к учебнику, просмотреть решения предыдущих задач, посоветоваться с преподавателем);
- 3) записать в сокращенном виде условие задачи (когда введены стандартные обозначения, легче вспоминать формулы, связывающие соответствующие величины, чётче видно, какие характеристики заданы, все ли они выражены в одной системе единиц и т.д.);
- 4) сделать чертёж, если это необходимо (делая чертёж, нужно стараться представить ситуацию в наиболее общем виде, например, если решается задача о колебании маятника, его следует изобразить не в положении равновесия, а отклонённым);
- 5) произвести анализ задачи, вскрыть её физический смысл (нужно чётко понимать, в чем будет заключаться решение задачи; так, если требуется найти траекторию движения точки, то ответом должна служить запись уравнений кривой, описывающей эту траекторию; на вопрос, будет ли траектория замкнутой линией, следует ответить «да» или «нет» и объяснить, почему выбран такой ответ);
- 6) установить, какие физические законы и соотношения могут быть использованы при решении данной задачи;
- 7) составить уравнения, связывающие физические величины, которые характеризуют рассматриваемые явления с количественной стороны;
- 8) решить эти уравнения относительно неизвестных величин, получить ответ в общем виде. Прежде чем переходить к численным значениям, полезно провести анализ этого решения: он поможет вскрыть такие свойства рассматриваемого явления, которые не видны в численном ответе;
- 9) перевести количественные величины в общепринятую систему единиц (СИ), найти численный результат;
- 10) проанализировать полученный ответ, выяснить как изменяется искомая величина при изменении других величин, функцией которых она является, исследовать предельные случаи.

Приведённая последовательность действий при решении задач усваивается студентами, как правило, в ходе занятий, когда они на практике убеждаются в её целесообразности.

Подготовка к лабораторным работам

Главные задачи лабораторного практикума по общей физике таковы:

- 1) экспериментальная проверка физических законов;
- 2) освоение методики измерений и приобретение навыков физического эксперимента;
 - 3) изучение принципов работы физических приборов;
 - 4) приобретения умения обработки результатов эксперимента.

Прежде чем приступить к выполнению эксперимента, студенту необходимо внимательно ознакомится с методическим описанием лабораторной работы. Методические описания содержат:

- 1) название работы, ее цель;
- 2) перечень приборов и принадлежностей;
- 3) элементы теории;
- 4) методику проведения работы;
- 5) порядок выполнения работы;
- 6) обработку результатов измерений;
- 7) контрольные вопросы.

Основная часть времени, выделенная на выполнение лабораторной работы, затрачивается на самостоятельную подготовку. Студент должен понимать, что методическое описание - это только основа для выполнения работы, что навыки экспериментирования зависят не от качества описания, а от отношения студента к работе и что формально, бездумно проделанные измерения – это потраченное впустую время. Если студент приступает к работе без чёткого представления о теории изучаемого вопроса, он не может понять физическое явление, не сумеет отделить изучаемый эффект от случайных ошибок, а также окажется не в состоянии судить об исправности и неисправности установки. Поэтом этапу выполнения работы предшествует «допуск к работе». Этот этап необходим и по той причине, что в лабораторном практикуме часто изучается темы, еще не прочитанные на лекциях и даже не включенные в лекционный курс. Прежде чем выполнять лабораторную работу студенту необходимо разобраться в устройстве установки или макета, порядке проведения измерений, а также иметь представление о том, какие расчеты необходимо будет провести.

Выполнение каждой ИЗ запланированных работ предоставлением отчета. Требования к форме и содержанию отчета приведены в каждой из лабораторий. Отчет по лабораторной работе студент должен начать оформлять еще на этапе подготовки к ее выполнению. Допускаясь к лабораторной работе, каждый студент должен представить преподавателю «заготовку» отчета, содержащую: оформленный титульный лист (по образцу, имеющемуся в лаборатории), цель работы, приборы и принадлежности, эскиз экспериментального макета, основные закономерности изучаемого явления и расчетные формулы. Чтобы сэкономить время при выполнении работы, рекомендуется заранее подготовить и таблицу для записи результатов измерений.

После выполнения лабораторной работы необходимо согласовать полученные результаты с преподавателем. После чего нужно провести расчеты и оценку погрешности измерений согласно методическим указаниям.

Важным этапом также является защита лабораторной работы. В процессе защиты студент отвечает на вопросы преподавателя, касающиеся теории изучаемого явления, комментирует полученные в ходе работы результаты. При подготовке к защите лабораторной работы рекомендуется пользоваться дополнительной литературой, список которой приведен в методическом описании, а также конспектом лекций. От того, насколько тщательно студент готовился к защите лабораторной работы во многом зависит и конечный результат его обучения.

Подготовка к сдаче экзамена

Экзамен – форма промежуточной проверки знаний, умений, навыков, степени освоения дисциплины.

Главная задача экзамена состоит в том, чтобы у студента из отдельных сведений и деталей составилось представление об общем содержании соответствующей дисциплины, стала понятной методика предмета, его система. Готовясь к экзамену, студент приводит в систему знания, полученные на лекциях, в лабораториях, на практических занятиях, разбирается в том, что осталось непонятным, и тогда изучаемая им дисциплина может быть воспринята в полном объеме с присущей ей строгостью и логичностью, ее практической направленностью.

Студенту на экзамене нужно не только знать сведения из тех или иных разделов физики, но и владеть ими практически: видеть физическую задачу в другой науке, уметь пользоваться физическими методами исследования в других естественных и технических науках, опираясь на методологию физики, получать новые знания и т. д.

Экзамены дают возможность также выявить, умеют ли студенты использовать теоретические знания при решении физических задач.

На экзамене оцениваются:

- 1) понимание и степень усвоения теории;
- 2) методическая подготовка;
- 3) знание фактического материала;
- 4) знакомство с основной и дополнительно литературой, а также с современными публикациями по данному курсу;
- 5) умение приложить теорию к практике, решать физические задачи, правильно проводить расчеты и т. д.;
 - 6) знакомство с историей науки;
- 7) логика, структура и стиль ответа, умение защищать выдвигаемые положения.

Но значение экзаменов не ограничивается проверкой знаний. Являясь естественным завершением работы студента, они способствуют обобщению и закреплению знаний и умений, приведению их в строгую систему, а также устранению возникших в процессе занятий пробелов. И еще одно значение экзаменов. Они проводятся по курсам, в которых преобладает теоретический материал, имеющий большое значение для подготовки будущего специалиста.

Студенту важно понять, что самостоятельность предполагает напряженную умственную работу. Невозможно предложить алгоритм, с помощью которого преподаватель сможет научить любого студента успешно осваивать науки, в частности, физику. Нужно, чтобы студент ставил перед собой вопросы по поводу изучаемого материала, которые можно разбить на две группы:

- 1) вопросы, необходимые для осмысления материала в целом, для понимания принципиальных физических положений;
- 2) текущие вопросы, которые возникают при детальном разборе материала.

Студент должен их ставить перед собой при подготовке к экзамену, и тогда на подобные вопросы со стороны преподавателя ему несложно будет ответить.

Подготовка к экзамену не должна ограничиваться беглым чтением лекционных записей, даже, если они выполнены подробно и аккуратно. Механического заучивания также следует избегать, поскольку его нельзя назвать учением уже потому, что оно создает внутреннее сопротивление какому бы то ни было запоминанию и, конечно уменьшает память. Более надежный и целесообразный путь — это тщательная систематизация материала при вдумчивом повторении, запоминании формулировок, установлении внутрипредметных связей, увязке различных тем и разделов, закреплении путем решения задач.

Перед экзаменом назначается консультация. Цель ее – дать ответы на вопросы, возникшие в ходе самостоятельной подготовки. Здесь студент имеет полную возможность получить ответ на все неясные ему вопросы. А для этого он должен проработать до консультации весь курс. Кроме того, преподаватель будет отвечать на вопросы других студентов, что будет для вас повторением закреплением знаний. И еще очень И обстоятельство: лектор на консультации, как правило, обращает внимание на которым на предыдущих экзаменах ответы были неудовлетворительными, а также фиксирует внимание на наиболее трудных разделах курса.

На непосредственную подготовку к экзамену обычно дается три - пять дней. Этого времени достаточно только для углубления, расширения и систематизации знаний, на устранение пробелов в знании отдельных вопросов, для определения объема ответов на каждый из вопросов программы.

Планируйте подготовку с точностью до часа, учитывая сразу несколько факторов: неоднородность материала и этапов его проработки (например, на первоначальное изучение у вас уходит больше времени, чем на повторение), свои индивидуальные способности, ритмы деятельности и привычки организма. Чрезмерная физическая нагрузка наряду с общим утомлением приведет к снижению тонуса интеллектуальной деятельности. Рекомендуется делать перерывы в занятиях через каждые 50-60 минут на 10 минут. После 3-4 часов умственного труда следует сделать часовой перерыв. Для сокращения времени на включение в работу целесообразно рабочие периоды делать более длительными, разделяя весь день примерно на три части — с утра до обеда, с обеда до ужина и с ужина до сна. Каждый рабочий период дня должен заканчиваться отдыхом в виде прогулки, неутомительного физического труда и т. п. Время и формы отдыха также поддаются планированию. Работая в сессионном режиме, студент имеет возможность увеличить время занятий с десяти (как требовалось в семестре) до тринадцати часов в сутки.

Подготовку к экзаменам следует начинать с общего планирования своей деятельности в сессию. С определения объема материала, подлежащего проработке. Необходимо внимательно сверить свои конспекты с программой, чтобы убедиться, все ли разделы отражены в лекциях. Отсутствующие темы законспектировать по учебнику. Более подробное планирование на ближайшие дни будет первым этапом подготовки к очередному экзамену. Второй этап предусматривает системное изучение материала по данному предмету с обязательной записью всех выкладок, выводов, формул. На третьем этапе - этапе закрепления — полезно чередовать углубленное повторение особенно сложных вопросов с беглым повторением всего материала.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- 1. Операционная система Windows XP (Microsoft Imagine, номер подписки 700102019, бессрочно)
- 2. Kaspersky Endpoint Security

11. Материально-техническое обеспечение дисциплины (модуля)

Для освоения дисциплины необходимы:

- 1. лекционная аудитория, оборудованная средствами отображения презентаций и других лекционных материалов на экран;
- 2. компьютерный класс, оснащенный персональными ЭВМ.

Программа составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.05.01 «Радиоэлектронные системы и комплексы» (квалификация выпускника – инженер, форма обучения – очная).

Программу составил к.т.н., доцент кафедры РУС

<u>Длициц</u> Дмитриев В.Т.