МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Ф. УТКИНА

Кафедра «Автоматизации информационных и технологических процессов»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДИСЦИПЛИНЫ

Б1.В.02 «Автоматизация технологических процессов и производств»

Направление подготовки

15.03.04 «Автоматизация технологических процессов и производств»

Направленность (профиль) подготовки

Компьютерное проектирование и автоматизированное производство

Уровень подготовки

Бакалавриат

Квалификация выпускника – бакалавр

Форма обучения – очная, заочная

Общие положения

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена.

Форма проведения экзамена — письменный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения экзаменационной оценки.

Паспорт оценочных материалов по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируе- мой компетенции (или её части)	Вид, метод, форма оценочного мероприятия 4
1	-	3	4
1.	Основные определения и задачи автоматизации производства.	ПК-4.1, ПК-4.2	Зачёт, экзамен
2.	Технико-экономические преимущества и критерии повышения производительности труда при автоматическом производстве.	ПК-4.1, ПК-4.2	Зачёт, экзамен
3.	Степень автоматизации производственных процессов. Основные определения и количественные показатели.	ПК-4.1, ПК-4.2	Зачёт, экзамен
4.	Виды производства и уровни их автоматизации.	ПК-4.1, ПК-4.2	Зачёт, экзамен
5.	Производственный процесс в машиностроении. Основные определения.	ПК-4.1, ПК-4.2	Зачёт, экзамен
6.	Структура производственного процесса в машиностроении и его составляющие.	ПК-4.1, ПК-4.2	Зачёт, экзамен
7.	Основные характеристики ПП.	ПК-4.1, ПК-4.2	Зачёт, экзамен
8.	Производственный процесс как поток материалов, энергии и информации.	ПК-4.1, ПК-4.2	Зачёт, экзамен
9.	Понятия качества изделий как совокупность свойств материалов, размерных и силовых параметров.	ПК-4.1, ПК-4.2	Зачёт, экзамен
10.	Методы достижения точности при автоматической сборке. Метод полной взаимозаменяемости. Метод неполной взаимозаменяемости. Метод групповой взаимозаменяемости.	ПК-4.1, ПК-4.2	Зачёт, экзамен
11.	Метод регулирования. Метод пригонки.	ПК-4.1, ПК-4.2	Зачёт, экзамен
12.	Цель и основные задачи размерного анализа процесса автоматической сборки. Этапы размерного анализа.	ПК-4.1, ПК-4.2	Зачёт, экзамен
13.	Группы размерных связей автоматического процесса изготовления деталей. Основные понятия.	ПК-4.1, ПК-4.2	Зачёт, экзамен
14.	Понятие технологичности конструкций для автоматизированного производства изготовления и сборки, способы ее обеспечения. Показатели технологичности (критерии).	ПК-4.1, ПК-4.2	Зачёт, экзамен
15.	Требования к конструкции изделий, предназначенных для автоматической сборки. Требования к сборочным единицам и деталям.	ПК-4.1, ПК-4.2	Зачёт, экзамен
16.	Методы и средства автоматизации сборочных процессов. Этапы автоматической сборки.	ПК-4.1, ПК-4.2	Зачёт, экзамен
17.	Способы и средства транспортирования, автоматической подачи ориентирования заготовок и деталей. Недостатки, возникающие при транспортировании.	ПК-4.1, ПК-4.2	Зачёт, экзамен

1	2	3	4
	Автоматическое устройство для подачи дисков.		
10	Устройство для подачи валиков в центры	пи и пи и о	2
18.	станка. Лотковые загрузочно-транспортные	ПК-4.1, ПК-4.2	Зачёт, экзамен
	устройства.		
	Подача неориентированных заготовок и дета-		
19.	лей. Бункер с элеваторным подъемником. Бун-	ПК-4.1, ПК-4.2	Зачёт, экзамен
	кер с ножевым захватом.	,	,
	Способы и устройства ориентирования деталей		
	при автоматической сборки. Устройство пас-	HIC 4.1 HIC 4.2	n "
20.	сивной ориентации и устройство активной ори-	ПК-4.1, ПК-4.2	Зачёт, экзамен
	ентации.		
	Классификация автоматического сборочного		
21.	оборудования. Однопозиционные сборочные	ПК-4.1, ПК-4.2	Зачёт, экзамен
21.	станки.	,	,
	Многопозиционные сборочные станки. Схема		
22.	четырехпозиционного сборочного автомата с	ПК-4.1, ПК-4.2	Зачёт, экзамен
	поворотным столом.	,	,
	Сборочные центры. Сборочные промышленные		
23.	роботы, классификация по группам. Основные	ПК-4.1, ПК-4.2	Зачёт, экзамен
	требования, предъявляемые к ПР сборки.	,	,
2.4	Схема сборки цилиндрических соединений с		n
24.	зазором на стенде. Сборочные поточные линии.	ПК-4.1, ПК-4.2	Зачёт, экзамен
	Сборочные станки непрерывного действия. Ро-		
25.	торный сборочный автомат. Цепной сборочный	ПК-4.1, ПК-4.2	Зачёт, экзамен
	автомат. Многоярусный сборочный автомат.	,	,
26	Переналаживаемое сборочное оборудование.	THE 4.1 THE 4.2	n "
26.	Гибкие автоматические сборочные системы.	ПК-4.1, ПК-4.2	Зачёт, экзамен
27.	Сборочные роботизированные технологиче-	пкат пказ	Zavišta avenaviavi
27.	ские комплексы. Модули и базовые структуры.	ПК-4.1, ПК-4.2	Зачёт, экзамен
	Построение автоматизированного производ-		
	ственного процесса изготовления деталей в по-		Экзамен
28.	точном и непоточном производствах. Характе-	Π K-4.1, Π K-4.2	
	ристика (факторы) поточного и непоточного		
	производства.		
20	Автоматические линии. Основные признаки	ПКИ1 ПКИ2	Экзамен
29.	АЛ и виды структурной компоновки.	ПК-4.1, ПК-4.2	Экзамен
20	Особенности проектирования техпроцесса об-	ПК-4.1, ПК-4.2	Экзамен
30.	работки детали на автоматических линиях.	11IN-4.1, 11IN-4.2	Экзамен
31.	Требования к технологическому процессу обра-	ПК-4.1, ПК-4.2	Экзамен
31.	ботки детали на АЛ. Синхронизация АЛ.	11IN-4.1, 11IN-4.2	Экзамен
	Проектирование техпроцессов обработки дета-		
32.	лей на АЛ. Этапы анализа на технологичность	ПК-4.1, ПК-4.2	Экзамен
	конструкции деталей для обработки на АЛ.		
22	Этапы разработки технологического процесса	ПК-4.1, ПК-4.2	Экзамен
33.	для АЛ. Основные показатели работы АЛ.	11IN-4.1, 11IN-4.2	Экзамен
34.	Гибкие автоматические линии. Состав гибких		
	автоматических линий.	ПК-4.1, ПК-4.2	Экзамен
	По отпо охума ортом стителения		
35.	Построение автоматизированного производ-	пкит пкио	Drenover
	ственного процесса, изготовление деталей в не-	ПК-4.1, ПК-4.2	Экзамен
	поточном производстве.		

1	2	3	4
36.	Структура ГПС.	ПК-4.1, ПК-4.2	Экзамен
37.	Система обеспечения функционирования ГПС.	ПК-4.1, ПК-4.2	Экзамен
38.	Классификация ГПС.	ПК-4.1, ПК-4.2	Экзамен
39.	Классификация и структурная схема РТК.	ПК-4.1, ПК-4.2	Экзамен
40.	Промышленные роботы в автоматизированном производственном процессе. Классификация ПР.	ПК-4.1, ПК-4.2	Экзамен

Критерии оценивания компетенций (результатов)

- 1). Уровень усвоения материала, предусмотренного программой.
- 2). Умение анализировать материал, устанавливать причинно-следственные связи.
- 3). Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4). Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция)
 - 5). Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

«Отлично» заслуживает обучающийся, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется обучающимся, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает обучающийся, обнаруживший полное знание учебно-программного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется обучающимся, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает обучающийся, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой,

рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется обучающимся, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится обучающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Типовые контрольные задания или иные материалы

Вопросы к зачету по дисциплине

- 1. Основные определения и задачи автоматизации производства.
- 2. Технико-экономические преимущества и критерии повышения производительности труда при автоматическом производстве.
- 3. Степень автоматизации производственных процессов. Основные определения и количественные показатели.
 - 4. Виды производства и уровни их автоматизации.
 - 5. Производственный процесс в машиностроении. Основные определения.
- 6. Структура производственного процесса в машиностроении и его составляющие.
 - 7. Основные характеристики ПП.
- 8. Производственный процесс как поток материалов, энергии и информации.
- 9. Понятия качества изделий как совокупность свойств материалов, размерных и силовых параметров.
- 10. Методы достижения точности при автоматической сборке. Метод полной взаимозаменяемости. Метод неполной взаимозаменяемости. Метод групповой взаимозаменяемости.
 - 11. Метод регулирования. Метод пригонки.
- 12. Цель и основные задачи размерного анализа процесса автоматической сборки. Этапы размерного анализа.
- 13. Группы размерных связей автоматического процесса изготовления деталей. Основные понятия.
- 14. Понятие технологичности конструкций для автоматизированного производства изготовления и сборки, способы ее обеспечения. Показатели технологичности (критерии).
- 15. Требования к конструкции изделий, предназначенных для автоматической сборки. Требования к сборочным единицам и деталям.
- 16. Методы и средства автоматизации сборочных процессов. Этапы автоматической сборки.
- 17. Способы и средства транспортирования, автоматической подачи ориентирования заготовок и деталей. Недостатки, возникающие при транспортировании.
- 18. Автоматическое устройство для подачи дисков. Устройство для подачи валиков в центры станка. Лотковые загрузочно-транспортные устройства.
- 19. Подача неориентированных заготовок и деталей. Бункер с элеваторным подъемником. Бункер с ножевым захватом.
- 20. Способы и устройства ориентирования деталей при автоматической сборки. Устройство пассивной ориентации и устройство активной ориентации.
- 21. Классификация автоматического сборочного оборудования. Однопозиционные сборочные станки.

- 22. Многопозиционные сборочные станки. Схема четырехпозиционного сборочного автомата с поворотным столом.
- 23. Сборочные центры. Сборочные промышленные роботы, классификация по группам. Основные требования, предъявляемые к ПР сборки.
- 24. Схема сборки цилиндрических соединений с зазором на стенде. Сборочные поточные линии.
- 25. Сборочные станки непрерывного действия. Роторный сборочный автомат. Цепной сборочный автомат. Многоярусный сборочный автомат.
- 26. Переналаживаемое сборочное оборудование. Гибкие автоматические сборочные системы.
- 27. Сборочные роботизированные технологические комплексы. Модули и базовые структуры.

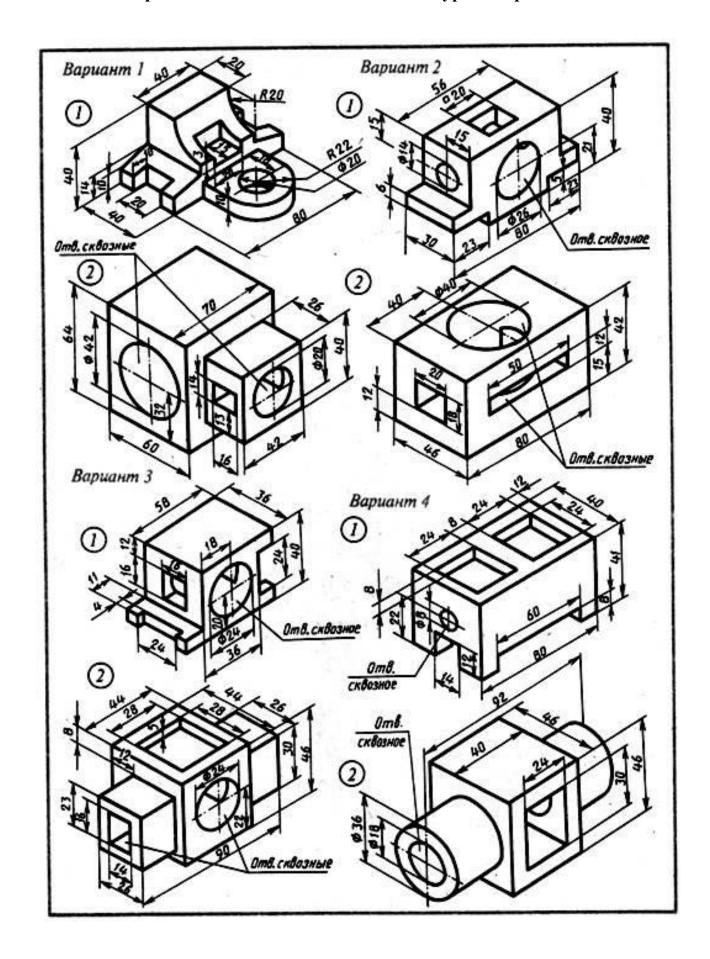
Вопросы к экзамену по дисциплине

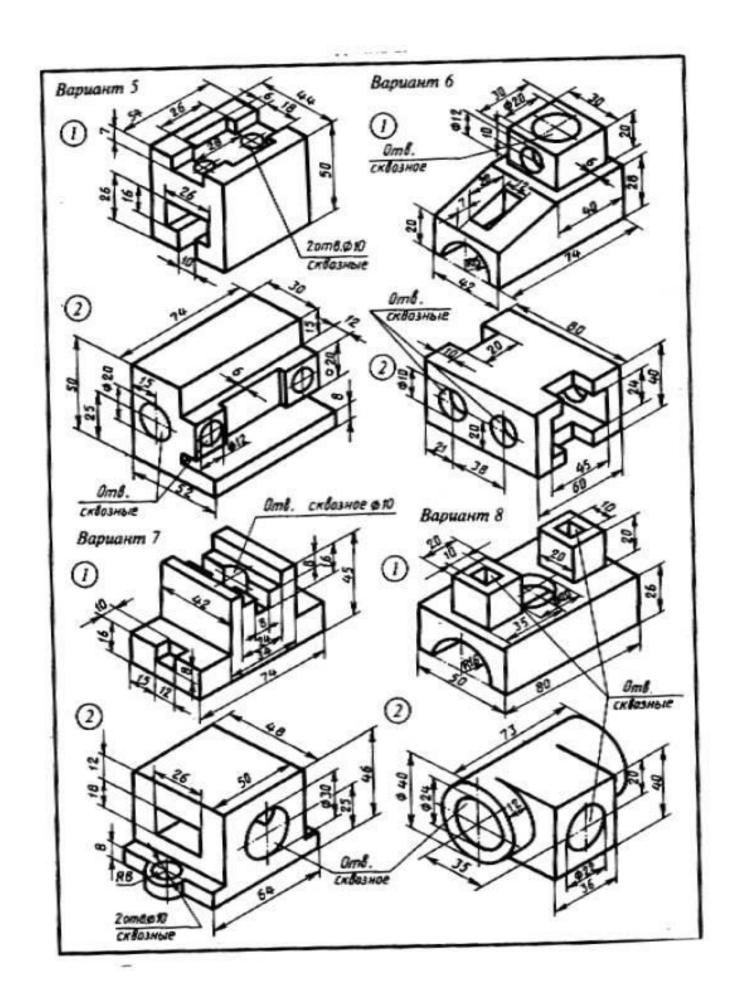
- 1. Основные определения и задачи автоматизации производства.
- 2. Технико-экономические преимущества и критерии повышения производительности труда при автоматическом производстве.
- 3. Степень автоматизации производственных процессов. Основные определения и количественные показатели.
 - 4. Виды производства и уровни их автоматизации.
 - 5. Производственный процесс в машиностроении. Основные определения.
- 6. Структура производственного процесса в машиностроении и его составляющие.
 - 7. Основные характеристики ПП.
- 8. Производственный процесс как поток материалов, энергии и информации.
- 9. Понятия качества изделий как совокупность свойств материалов, размерных и силовых параметров.
- 10. Методы достижения точности при автоматической сборке. Метод полной взаимозаменяемости. Метод неполной взаимозаменяемости. Метод групповой взаимозаменяемости.
 - 11. Метод регулирования. Метод пригонки.
- 12. Цель и основные задачи размерного анализа процесса автоматической сборки. Этапы размерного анализа.
- 13. Группы размерных связей автоматического процесса изготовления деталей. Основные понятия.
- 14. Понятие технологичности конструкций для автоматизированного производства изготовления и сборки, способы ее обеспечения. Показатели технологичности (критерии).
- 15. Требования к конструкции изделий, предназначенных для автоматической сборки. Требования к сборочным единицам и деталям.
- 16. Методы и средства автоматизации сборочных процессов. Этапы автоматической сборки.

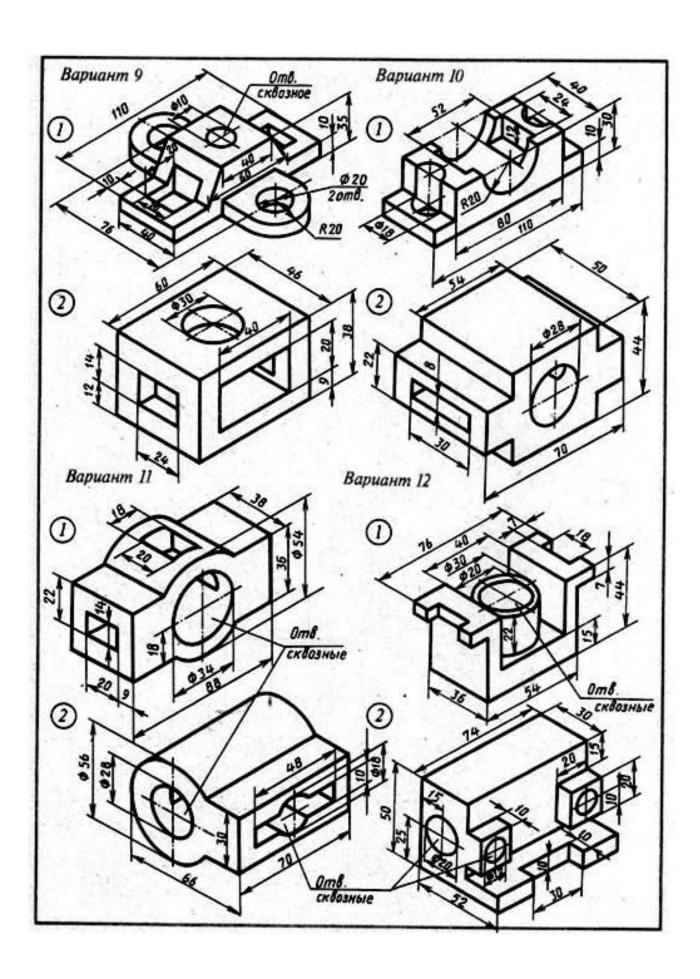
- 17. Способы и средства транспортирования, автоматической подачи ориентирования заготовок и деталей. Недостатки, возникающие при транспортировании.
- 18. Автоматическое устройство для подачи дисков. Устройство для подачи валиков в центры станка. Лотковые загрузочно-транспортные устройства.
- 19. Подача неориентированных заготовок и деталей. Бункер с элеваторным подъемником. Бункер с ножевым захватом.
- 20. Способы и устройства ориентирования деталей при автоматической сборки. Устройство пассивной ориентации и устройство активной ориентации.
- 21. Классификация автоматического сборочного оборудования. Однопозиционные сборочные станки.
- 22. Многопозиционные сборочные станки. Схема четырехпозиционного сборочного автомата с поворотным столом.
- 23. Сборочные центры. Сборочные промышленные роботы, классификация по группам. Основные требования, предъявляемые к ПР сборки.
- 24. Схема сборки цилиндрических соединений с зазором на стенде. Сборочные поточные линии.
- 25. Сборочные станки непрерывного действия. Роторный сборочный автомат. Цепной сборочный автомат. Многоярусный сборочный автомат.
- 26. Переналаживаемое сборочное оборудование. Гибкие автоматические сборочные системы.
- 27. Сборочные роботизированные технологические комплексы. Модули и базовые структуры.
- 28. Построение автоматизированного производственного процесса изготовления деталей в поточном и непоточном производствах. Характеристика (факторы) поточного и непоточного производства.
- 29. Автоматические линии. Основные признаки АЛ и виды структурной компоновки.
- 30. Особенности проектирования техпроцесса обработки детали на автоматических линиях.
- 31. Требования к технологическому процессу обработки детали на АЛ. Синхронизация АЛ.
- 32. Проектирование техпроцессов обработки деталей на АЛ. Этапы анализа на технологичность конструкции деталей для обработки на АЛ.
- 33. Этапы разработки технологического процесса для АЛ. Основные показатели работы АЛ.
 - 34. Гибкие автоматические линии. Состав гибких автоматических линий.
- 35. Построение автоматизированного производственного процесса, изготовление деталей в непоточном производстве.
 - 36. Структура ГПС.
 - 37. Система обеспечения функционирования ГПС.
 - 38. Классификация ГПС.
 - 39. Классификация и структурная схема РТК.
- 40. Промышленные роботы в автоматизированном производственном процессе. Классификация ПР.

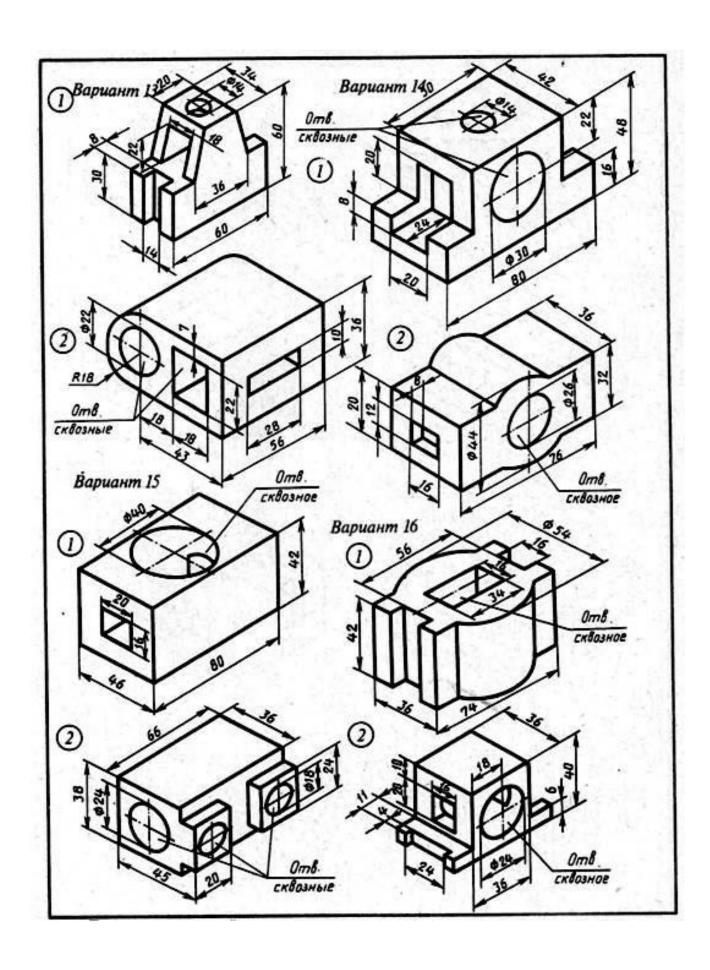
Образец задания на выполнение курсовой работы

Федеральное государственное бюджетное образовательное учреждение высшего образования


«Рязанский государственный радиотехнический университет имени В.Ф. Уткина»


Кафедра Автоматизации информационных и технологических процессов


ЗАДАНИЕ


На курсовую работу по дисциплине: <u>А</u>	<u>Івтоматизация технологических процессов</u>		
u	производств		
Обучающемуся группы 937	Иванову Ивану Ивановичу		
 Тема курсовой работы: Разработка т 	ехнологического процесса		
автоматизированного произ	водств изделия для оборудования с ЧПУ		
Исходные данные для выполнения ра	аботы:		
2.1. Чертеж изделия: эскиз детали (п	вариант n)		
2.2. Этапы разработки технологичес	кого процесса:		
 Создание 3D модели изделия 	-		
2. Анализ конструкции изделия	на технологичность.		
 Выбор оборудования с ЧПУ ; 	для производства изделия.		
 Разработка ТП автоматизированного производства изделия: выбор технологических операций и межоперационных переходов; 			
Разработка листинга програм	мы для оборудования с ЧПУ.		
Компьютерное моделировани	ие выполнения ТП обработки изделия.		
2.3. Средства САПР: Современные:	прикладные пакеты программ		
конструкторск	о-технологического проектирования.		
САD/САМ модули интегрированных систем			
2.4. Дополнительные требования от	сутствуют		
3. Объем курсовой работы:			
 Пояснительная записка <u>30 - 35 ст</u> 	• • •		
 3.2. Графический материал в формат 	-		
4. Срок выполнения: «»	202_r.		
5. Дата выдачи задания: «»	202_r.		
	/ 7		
Задание выдал преподаватель	/ Ленков М.В.		
Задание принял к исполнению обуча	ающийся <u>/ Иванов И.И.</u>		

Варианты заданий для выполнения курсовой работы.

Библиографический список

- 1. Молдабаева, М. Н. Автоматизация технологических процессов и производств: учебное пособие / М. Н. Молдабаева. Москва, Вологда: Инфра-Инженерия, 2019. 224 с. ISBN 978-5-9729-0330-6. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/86574.html (дата обращения: 07.12.2022). Режим доступа: для авторизир. пользователей.
- 2. Евгенев, Г. Б. Основы автоматизации технологических процессов и про-изводств. В 2 томах. Т.2. Методы проектирования и управления : учебное пособие / Г. Б. Евгенев, С. С. Гаврюшин, Е. Н. Хоботов ; под редакцией Г. Б. Евгенева. Москва : Московский государственный технический университет имени Н.Э. Ба-умана, 2015. 480 с. ISBN 978-5-7038-4139-6 (т.2), 978-5-7038-4137-2. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/94043.html (дата обращения: 07.12.2022). Режим доступа: для авторизир. пользователей
- 3. Шидловский, С. В. Автоматизация технологических процессов и производств: учебное пособие / С. В. Шидловский; под редакцией Н. И. Шидловская. Томск: Томский государственный университет систем управления и радиоэлектроники, 2005. 100 с. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/13918.html (дата обращения: 07.12.2022). Режим доступа: для авторизир. пользователей.
- 4. Лыков, А. Н. Автоматизация технологических процессов и производств: учебное пособие / А. Н. Лыков. Пермь: Пермский государственный технический университет, 2008. 429 с. ISBN 978-5-398-00116-7. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/108427.html (дата обращения: 07.12.2022). Режим доступа: для авторизир. пользователей.

		Оператор ЭДО ООО "Компания "Тензор"		
ДОКУМЕНТ ПОДПИ	документ подписан электронной подписью			
ПОДПИСАНО ЗАВЕДУЮЩИМ КАФЕДРЫ	ФГБОУ ВО "РГРТУ", РГРТУ, Ленков Михаил Владимирович, Заведующий кафедрой АИТП	30.06.25 14:34 (MSK)	Простая подпись	
ПОДПИСАНО ЗАВЕДУЮЩИМ ВЫПУСКАЮЩЕЙ КАФЕДРЫ	ФГБОУ ВО "РГРТУ", РГРТУ, Ленков Михаил Владимирович, Заведующий кафедрой АИТП	30.06.25 14:34 (MSK)	Простая подпись	