Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено – не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением зачета.

Форма проведения зачета – письменный ответ по вопросам, сформулированным с учетом содержания учебной дисциплины или тест.

Паспорт оценочных материалов по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	2	3	4
	1-й раздел	ОПК-1.2-3	Зачет
1	Введение в математическое	ОПК-1.2-У	
	программирование для задач проектирования радиоэлектронных средств	ОПК-1.2-В	
	2-й раздел	ОПК-1.2-3	Зачет
2	Классификация математических моделей	ОПК-1.2-У	
	технических объектов	ОПК-1.2-В	
	3-й раздел	ОПК-1.2-3	Зачет
3	Методика получения математического	ОПК-1.2-У	
	описания технического объекта	ОПК-1.2-В	

4	4-й раздел Модели элементов радиоэлектронных устройств	ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В	Зачет, лабораторная работа
5	5-й раздел Типовые процедуры, применяемые при математическом описании технических объектов	ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В	Зачет
6	6-й раздел Операторный метод анализа технических объектов	ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В	Зачет
7	7-й раздел Прямые методы формирования математических моделей РЭС	ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В	Зачет
8	8-й раздел Математическое описание переходных процессов в РЭС	ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В	Зачет

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4) Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция)
- 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается по шкале:

«Зачет» – выставляется, если сформированность заявленных дескрипторов компетенций на 50% и более оценивается не ниже «удовлетворительно» при условии отсутствия критерия «неудовлетворительно». Выставляется, когда обучающийся показывает хорошие знания изученного учебного материала; самостоятельно, логично и последовательно излагает, и интерпретирует материалы учебного курса; полностью раскрывает смысл предлагаемого вопроса; владеет основными терминами и понятиями изученного курса; показывает умение переложить теоретические знания на предполагаемый практический опыт.

«Незачет» — выставляется, если сформированность заявленных дескрипторов компетенций менее чем 50% оценивается критериями ниже «удовлетворительно», при ответе обучающегося выявились существенные пробелы в знаниях основных положений фактического материала, неумение с помощью преподавателя получить правильное решение конкретной практической задачи из числа предусмотренных рабочей программой учебной дисциплины.

Вопросы к зачету по дисциплине

- 1. Назовите основные принципы моделирования сложных технических объектов.
- 2. Какие модели используются для описания функциональных узлов РЭС?
- 3. Какие модели описывают отдельные блоки РЭС?
- 4. С помощью каких моделей описывается принцип работы РЭС?
- 5. Как называется процедура определения структуры объекта по заданным требованиям к его выходным характеристикам?
- 6. Как называется процедура определения выходных параметров объекта при заданных внешних воздействиях и известной структуре?
- 7. На основе какой процедуры выполняется определение значений параметров элементов при известной структуре и заданных условиях работоспособности объекта?
- 8. Модели какого уровня чаще всего используют при проектировании радиоэлектронных средств.
- 9. Какие конструкторские задачи относятся к задачам структурного синтеза в моделировании ЭС?
- 10. Что служит критериями качества решения задач компоновки, размещения, трассировки?
- 11. Каким образом решается задача компоновки?
- 12. Для каких типов монтажных соединений применяются алгоритмы Прима, волновой алгоритм, алгоритм построения деревьев Штейнера?
- 13. Для чего при моделировании электронных средств применяется метод декомпозиции?
- 14. Напишите математическую модель задачи покрытия в классе задач математического программирования.
- 15. Почему при решении задачи покрытия с помощью алгоритма на каждом шаге выбор номера ячейки, покрывающей элементы схемы, делается по минимальному значению из числа возможных?
- 16. Сколько ребер будет иметь дерево графа цепи, состоящего из 10-ти ветвей и 5-ти узлов?
- 17. Для заданной матрицы инциденций А запишите и вычислите матрицу главных сечений D и главных контуров B.
- 18. Для заданной цепи записать операторное сопротивление Z(p).
- 19. Для заданной цепи, используя преобразование Лапласа, найти выражение для выходного параметра Uвых при известном входном параметре Uвх.
- 20. Записать выражение для H(t), если известно выражение для изображения H(p).
- 21. Дайте сравнительную характеристику прямых и итерационных методов поиска решения для СЛАУ.
- 22. Какие методы поиска решений наиболее подходят для применения в составе моделирования электронных схем?
- 23. Запишите (представить в виде блок-схемы) алгоритм частотного анализа радиоэлектронных схем на основе метода узловых проводимостей.
- 24. Для представленной схемы записать матрицу коэффициентов Т системы уравнений математической модели.
- 25. Какой из методов (табличный, модифицированный табличный, модифицированный узловой) имеет матрицу коэффициентов Т меньшей размерности?
- 26. Запишите итерационную формулу Ньютона-Рафсона для одного уравнения и для системы нелинейных уравнений. Дайте геометрическую интерпретацию метода.
- 27. В чем заключаются недостатки метода Ньютона-Рафсона для решения систем нелинейных уравнений?
- 28. Дайте геометрическую интерпретацию ситуации, когда метод Ньютона-Рафсона расходится.
- 29. Запишите формулы для оценки точности полученного решения на к-том шаге метода Ньютона-Рафсона.

- 30. Дайте геометрическую интерпретацию методов Эйлера и метода трапеций при математическом моделировании РЭС.
- 31. Дайте определение понятию «устойчивость» метода численного интегрирования.
- 32. В чем суть метода дискретных моделей?
- 33. В чем смысл численного метода обратного преобразования Лапласа?
- 34. Современные математические пакеты, применяемые для задач моделирования РЭС.
- 35. Иерархия уровней математического описания проектируемых объектов.
- 36. Внутренние, внешние, выходные параметры математической модели РЭС.
- 37. Требования к математическим моделям.
- 38. Синтез структуры математической модели технического объекта.
- 39. Оценка точности и адекватности математической модели.
- 40. Математические основы формирования моделей РЭС, применение теории графов.
- 41. Матричный способ описания топологических уравнений технических объектов.
- 42. Учет ненулевых начальных условий при описании в операторной форме.
- 43. Математические модели дискретных элементов радиоэлектронных схем.
- 44. Математическое описание РЭС в частотной области.
- 45. Описание РЭС посредством СЛАУ и СНАУ.
- 46. Математическое описание временных характеристик РЭС.
- 47. Численный метод обратного преобразования Лапласа.
- 48. Математические модели монтажно-коммутационного пространства.
- 49. Алгоритмы размещения конструктивных модулей РЭС.
- 50. Алгоритмы компоновки конструктивных модулей РЭС.
- 51. Алгоритмы и модели трассировки соединений модулей РЭС.
- 52. Моделирование неисправностей в РЭС и синтез диагностических тестов.

Типовые задания для самостоятельной работы

- 1. Современные математические пакеты, применяемые для задач моделирования РЭС.
- 2. Модели какого уровня чаще всего используют при проектировании радиоэлектронных средств? Приведите пример внутренних, внешних, выходных параметров модели РЭС.
- 3. Перечислите требования к математическим моделям.
- 4. В чем заключается синтез структуры математической модели технического объекта?
- 5. Каким образом оценивается точность и адекватность математической модели?
- 6. В чем заключается метод линейного программирования?
- 7. Охарактеризуйте типовые процедуры, применяемые при математическом описании технических объектов.
- 8. В чем заключается матричный способ описания топологических уравнений технических объектов?
- 9. Приведите пример математической модели монтажно-коммутационного пространства.
- 10. Алгоритмы и модели трассировки соединений модулей РЭС?

Лабораторный практикум

№ п/п	№ раздела дисциплины	Наименование лабораторной работы	Трудоемкость, час
1	4	Расположение и идентификация компонентов	2
2	4	Работа усилителя с последовательной обратной связью	2
3	4	Влияние обратной связи на усиление переменного тока	2
4	4	Влияние отрицательной последовательной обратной связи на ширину диапазона	2
5	4	Влияние последовательной обратной связи на входной и выходной импеданс	2
6	4	Влияние параллельной обратной связи на усиление переменного тока	2
7	4	Влияние параллельной обратной связи на ширину диапазона	2
8	4	Влияние параллельной обратной связи на входной и выходной импеданс	2

СПИСОК

вопросов на проверку знания

лабораторного практикума

- 1. Сколько блоков имеется на плате СХЕМЫ ТРАНЗИСТОРНОЙ ОБРАТНОЙ СВЯЗИ?
- 2. Какие из этих блоков являются многокаскадными?
- 3. В состав какого из блоков на плате входит потенциометр?
- 4. В качестве чего усилитель с параллельно-последовательной обратной связью наиболее эффективен?
- 5. В каком блоке применяется регулируемый источник питания?
- 6. В каком блоке применяются два источника питания?
- 7. От чего зависит коэффициент усиления по току в усилителе с параллельно-последовательной обратной связью?

- 8. При каких условиях в усилителе с параллельно-последовательной обратной связью выходной ток остается постоянным?
- 9. В данной схеме что зависит от сопротивления резистора R6?
- 10. Чем является в усилителе с последовательно-параллельной обратной связью обратная связь во входном каскаде?
- 11. Чему прямо пропорционально в усилителе с последовательно-параллельной обратной связью выходное полное сопротивление?
- 12. Пропорционально чему изменяется выходное полное сопротивление усилителя с последовательно-параллельной обратной связью?
- 13. Что является общей характеристикой усилителей с последовательно-параллельной и параллельно-последовательной обратной связью?
- 14. От сопротивления какого резистора в усилителе с параллельно-последовательной обратной связью зависит выходное полное сопротивление?
- 15. Чем является усилитель с последовательно-параллельной обратной связью?
- 16. Как влияет параллельная отрицательная обратная связь на форму и амплитуду тока сигнала усилителя?
- 17. Какие функции режима осциллографа «Math menu» доступны для сигналов в модели HANTEK DSO4202С?
- 18. На чего влияет перемычка, обозначенная на схеме синим цветом?
- 19. Как влияет параллельная отрицательная обратная связь на ширину диапазона?
- 20. Как влияет изменение частоты генератора на амплитудно-частотные характеристики каскада?
- 21. Что подключает самая нижняя красная перемычка в схеме?
- 22. Что регулирует в схеме подстроечный резистор R8?
- 23. Как влияет последовательная отрицательная обратная связь на выходной импеданс усилительного каскада?
- 24. Как рассчитать выходной импеданс усилителя?

Тестовые вопросы по дисциплине

Типы вопросов:

1. с выбором одного правильного ответа;

1. Модель – это...

No	Варианты ответа	прав	тип	сложн
				ость
a)	аналог (образ) оригинала, но построенный средствами и методами, отличными от оригинала	+	1	1
b)	подобие оригинала		1	1
c)	копия оригинала			

2. Математическая модель – это...

N	<u>o</u>	Варианты ответа	прав	ТИП	сложн
					ость

a)	математическое представление проектируемой системы (объектов, задачи, явлений, процессов и т. п.)	+		
b)	качественный анализ и интуитивное представление объектов, задач, явлений, процессов проектируемой системы и ее параметров		1	1
c)	эвристические описание проектируемой системы (объектов, задачи, явлений, процессов и т. п.)			

3. Метод – это...

No	Варианты ответа	прав	ТИП	сложн
				ость
a)	подходы, пути и способы постановки и решения той или иной задачи в различных областях человеческой деятельности	+		
b)	описание особенностей задачи (проблемы) и условий ее решения		1	1
c)	требования к условиям решения той или иной задачи			

4. Выберите неверное утверждение

No	Варианты ответа	прав	тип	сложн
				ость
a)	Математическая модель позволяет сделать вывод о поведении объекта в будущем			
b)	Математическая модель позволяет управлять объектом	+	1	1
c)	Математическая модель позволяет выявить и формально описать связи между переменными, которые характеризуют исследования			

5. Найти экстремум функции f(x) при выполнении ограничений Ri(x) = ai, $\phi(x) \le bj$, наложенных на параметры функции — это задача

No	Варианты ответа	прав	тип	сложн ость
				ОСТЬ
a)	условной оптимизации	+		
b)	безусловной оптимизации		1	1
c)	линейного программирования			

6. Если целевая функция и все ограничения выражаются с помощью линейных уравнений, то рассматриваемая задача является задачей

No	Варианты ответа	прав	ТИП	сложн ость
a)	динамического программирования		1	1

b	нелинейного программирования		
c)	линейного программирования	+	

7. Транспортная задача является задачей программирования

No	Варианты ответа	прав	ТИП	сложн
				ость
a)	параметрического			
b)	линейного	+	1	1
c)	динамического			

8. Математическое программирование...

№	Варианты ответа	прав	ТИП	сложн ость
a)	занимается изучением экстремальных задач и разработкой методов их решения	+		
b)	представляет собой процесс создания программ для компьютера под руководством математиков		1	1
c)	занимается решением математических задач на компьютере			

9. Задача линейного программирования состоит в ...

No	Варианты ответа	прав	тип	сложн
				ость
a)	создании линейной программы на избранном языке программирования, предназначенной для решения поставленной задачи		1	1
b)	отыскании наибольшего (наименьшего) значения линейной функции при наличии линейных ограничений	+	1	1
c)	описании линейного алгоритма решения заданной задачи			

10. Симплекс-метод - это:

No	Варианты ответа	прав	тип	сложн ость
				ОСТВ
a)	метод отыскания области допустимых решений задачи линейного программирования;			
b)	аналитический метод решения основной задачи линейного программирования	+	1	1
c)	графический метод решения основной задачи линейного программирования			

11. Симплексный метод служит для решения задач следующего раздела

математического программирования

№	Варианты ответа	прав	ТИП	сложн ость
a)	Динамическое программирование			
b)	Квадратичное программирование		1	1
c)	Линейное программирование	+		

12. Задачей дискретного линейного программирования называется

No	Розмочти отрого			OHOMA
745	Варианты ответа	прав	ТИП	сложн
				ость
a)	Задача линейного программирования с дополнительным	+		
	условием целочисленности некоторых переменных			
b)	Задача линейного программирования без условий		1	1
	неотрицательности переменных		1	1
	man thurthur mak awammy			
c)	Задача линейного программирования без ограничений типа			
-/				
	неравенств			
			ĺ	1

13. Задача коммивояжера относится к типу задач

No	Варианты ответа	прав	ТИП	сложн
				ость
a)	Динамического программирования			
b)	Нелинейного программирования		1	1
c)	Линейного дискретного программирования	+		

14. Задача о назначениях является дискретным случаем:

№	Варианты ответа	прав	тип	сложн
				ость
a)	Задачи о кратчайшем расстоянии на заданной сети			
b)	Транспортной задачи линейного программирования	+	1	1
c)	Задачи коммивояжера			

15. Для задачи математического программирования к задаче оптимизации без

ограничений из перечисленных используется:

№	Варианты ответа	прав	ТИП	сложн ость
a)	Метод функции Лагранжа	+	1	1
b)	Метод потенциалов			

с) Распределительный метод

16. Метод Ньютона является численным методом нелинейной оптимизации

No	Варианты ответа	прав	тип	сложн ость
a)	0-го порядка			
b)	1-го порядка		1	1
c)	2-го порядка	+		

17. Метод покоординатного спуска является численным методом нелинейной оптимизации:

No	Варианты ответа	прав	ТИП	сложн
				ость
a)	0-го порядка			
b)	1-го порядка	+	1	1
c)	2-го порядка			

18. Градиентный метод является численным методом нелинейной оптимизации:

№	Варианты ответа	прав	ТИП	сложн
				ость
a)	0-го порядка			
b)	1-го порядка	+	1	1
c)	2-го порядка			

19. Для применения численных методом нелинейной оптимизации 0-го порядка необходима:

	псобходима.			
№	Варианты ответа	прав	ТИП	сложн ость
a)	непрерывная дифференцируемость целевой функции			
b)	непрерывность целевой функции	+	1	1
c)	выпуклость целевой функции			

20. Метод штрафных функций используется при решении задач нелинейной оптимизации для того, чтобы

No	Варианты ответа	прав	тип	сложн ость
a)	свести задачу нелинейного программирования к задаче линейного программирования		1	1

b)	свести задачу с ограничениями к задаче без ограничений	+	
c)	свести задачу с невыпуклой целевой функцией к задаче выпуклого программирования		

21. При решении задачи безусловной оптимизации на максимум частные производные в точке решения:

3.0	<u> </u>			
No	Варианты ответа	прав	ТИП	сложн
	-	-		ость
				ОСТВ
a)	больше нуля			
	•			
1- \			1	1
b)	меньше нуля		1	1
c)	равны нулю	+		
()	publish if your	'		

22. Компонентами градиента функции являются:

№	Варианты ответа	прав	тип	сложн
				ость
a)	частные производные первого порядка	+		
b)	частные производные второго порядка		1	1
c)	частные производные третьего порядка			

23. Метод многокритериальной оптимизации, где все критерии кроме одного используются в качестве ограничений, называется:

№	Варианты ответа	прав	тип	сложн
				ость
a)	Метод выделения главного критерия	+		
b)	Метод последовательных уступок		1	1
d)	Метод лексикографической оптимизации			

24. Метод многокритериальной оптимизации, где критерии упорядочиваются по степени важности, после чего оптимальный план по очередному критерию ищется на надмножестве планов, оптимальных по всем предыдущим критериям, называется:

№	Варианты ответа	прав	ТИП	сложн
				ость
a)	Метод выделения главного критерия			
b)	Метод последовательных уступок	+	1	1
c)	Метод лексикографической оптимизации			

25. Метод многокритериальной оптимизации, где критерии упорядочиваются по степени важности, после чего оптимальный план по очередному критерию ищется

на множестве планов, оптимальных по всем предыдущим критериям, называется:

№	Варианты ответа	прав	тип	сложн
				ость
a)	Метод выделения главного критерия			
c)	Метод последовательных уступок		1	1
d)	Метод лексикографической оптимизации	+		

26. Часть математического программирования, задачами которой является нахождение экстремума линейной целевой функции на допустимом множестве значений аргументов называется:

No	Варианты ответа	прав	тип	сложн
				ость
a)	Динамическое программирование			
b)	Квадратичное программирование		1	1
c)	Линейное программирование	+		

27. Критерий, согласно которому происходит стремление получения максимального выигрыша в наихудшей ситуации называется

$N_{\underline{0}}$	Варианты ответа	прав	ТИП	сложн
				ость
a)	Критерий минимаксного сожаления			
c)	Максиминный критерий	+	1	1
d)	Минимаксный критерий			

28. Как называется следующая теорема: «Если целевая функция принимает максимальное значение в некоторой точке допустимой области, то она принимает это же значение в крайней точке допустимой области. Если целевая функция принимает максимальное значение более, чем в одной крайней точке, то она принимает это же значение в пюбой их выпуклой комбинации»

	принимает это же значение в любой их выпуклой комбинации»							
№	Варианты ответа	прав	тип	сложн				
				ость				
a)	Основная теорема линейного программирования	+						
c)	Теорема двойственности		1	1				
d)	Теорема о выпуклом множестве и выпуклой комбинации этого							
	множества							

29. Функция в математическом программировании, для которой требуется найти экстремум, называется

№	Варианты ответа	прав	тип	сложн
				ость

a)	Функция Эйлера			
b)	Функция Лапласа		1	1
d)	Целевая функция	+		

30. В каком направлении сдвигают линию уровня целевой функции при решении задачи линейного программирования на максимум?

No	Варианты ответа	прав	ТИП	сложн
				ость
b)	вверх			
c)	в направлении антиградиента			
d)	в направлении градиента	+		