## МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф УТКИНА»

Кафедра «Электронные приборы»

## оценочные материалы дисциплины МИКРОПРОЦЕССОРЫ В ЭЛЕКТРОННЫХ УСТРОЙСТВАХ

Фонд оценочных средств – это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (отлично, хорошо, удовлетворительно, неудовлетворительно).

### 1. Паспорт фонда оценочных средств по дисциплине

| №<br>п/<br>п | Контролируемые разделы (темы) дисциплины (результаты поразделам) | Код кон-<br>троли-<br>руемой<br>компетен-<br>ции (или<br>её части) | Этап формирова-<br>ния<br>контролируемой<br>компетенции<br>(или её части)                    | Вид, метод,<br>форма<br>оценочного<br>средства |
|--------------|------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|
| 1            | 2                                                                | 3                                                                  | 4                                                                                            | 5                                              |
| 1            | Основы вычислитель-<br>ной техники                               | ПК-1.1<br>ПК-2.1<br>ПК-2.2<br>ПК-3.2                               | Лекционные и са-<br>мостоятельные за-<br>нятия обучающихся<br>в течение учебного<br>семестра | Экзамен,<br>сдача лабо-<br>раторных<br>работ   |
| 2            | Позиционные системы счисления.                                   | ПК-1.1<br>ПК-2.1<br>ПК-2.2<br>ПК-3.2                               | Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра   | Экзамен,<br>сдача лабо-<br>раторных<br>работ   |
| 3            | Представление данных в процессоре.                               | ПК-1.1<br>ПК-2.1<br>ПК-2.2<br>ПК-3.2                               | Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра   | Экзамен,<br>сдача лабо-<br>раторных<br>работ   |
| 4            | Основные способы адресации.                                      | ПК-1.1<br>ПК-2.1<br>ПК-2.2<br>ПК-3.2                               | Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного се-        | Экзамен,<br>сдача лабо-<br>раторных<br>работ   |

|   |                        |        | местра              |             |
|---|------------------------|--------|---------------------|-------------|
| 5 | Виды и форматы ко-     | ПК-1.1 | Лекционные, лабо-   | Экзамен,    |
|   | манд                   | ПК-2.1 | раторные и само-    | сдача лабо- |
|   |                        | ПК-2.2 | стоятельные занятия | раторных    |
|   |                        | ПК-3.2 | обучающихся в те-   | работ       |
|   |                        |        | чение учебного се-  |             |
|   |                        |        | местра              |             |
| 6 | Архитектура учебного   | ПК-1.1 | Лекционные и са-    | Экзамен,    |
|   | процессора.            | ПК-2.1 | мостоятельные за-   | сдача лабо- |
|   |                        | ПК-2.2 | нятия обучающихся   | раторных    |
|   |                        | ПК-3.2 | в течение учебного  | работ       |
|   |                        |        | семестра            |             |
| 7 | Периферийные устрой-   | ПК-1.1 | Лекционные и са-    | Экзамен,    |
|   | ства микропроцессоров. | ПК-2.1 | мостоятельные за-   | сдача лабо- |
|   |                        | ПК-2.2 | нятия обучающихся   | раторных    |
|   |                        | ПК-3.2 | в течение учебного  | работ       |
|   |                        |        | семестра            |             |

#### 2. Формы текущего контроля

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранениянедостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания иминдивидуальной помощи.

Текущий контроль по дисциплине проводится в виде проверки заданий, выполняемых самостоятельно и на лабораторных занятиях, а также в виде опросов на практических занятиях.

## 3. Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является экзамен. К экзамену допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения экзамена — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

## 4. Критерии оценки компетенций обучающихся и шкалы оценивания

Оценка формирования компетенций у обучающихся на различных этапах проводится преподавателем во время лекций, консультаций, лабораторных занятий по шкале оценок «зачтено» – «не зачтено».

Освоение материала дисциплины и достаточно высокая степень формирования контролируемых компетенций обучающегося служат основанием для допуска, обучающегося к этапу промежуточной аттестации - экзамену.

Целью проведения промежуточной аттестации (экзамена) является проверка компетенций, приобретенных студентом при изучении дисциплины.

Экзамен организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, является утвержденный экзаменационный билет, содержание которого определяется ОПОП и рабочей программой предмета. Экзаменационный билет включает в себя, как правило, два вопроса относящихся к теоретическим разделам дисциплины. Оценке на заключительной стадии экзамена подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора.

Применяются следующие критерии оценивания компетенций (результатов):

- -уровень усвоения материала, предусмотренного программой;
- -умение анализировать материал, устанавливать причинноследственные связи;
  - полнота, аргументированность, убежденность ответов на вопросы;
- -качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- -использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

Применяется четырехбальная шкала оценок: "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", что соответствует шкале "компетенции студента полностью соответствуют требованиям  $\Phi \Gamma OC\ BO$ ", "компетенции студента соответствуют требованиям  $\Phi \Gamma OC\ BO$ ", "компетенции студента в основном соответствуют требованиям  $\Phi \Gamma OC\ BO$ ", "компетенции студента не соответствуют требованиям  $\Phi \Gamma OC\ BO$ ".

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

#### «Отлично»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

#### «Хорошо»:

достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов.

### «Удовлетворительно»:

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов):

понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

#### «Неудовлетворительно»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

При трех вопросах в билете общая оценка выставляется следующим образом: «отлично», если все оценки «отлично» или одна из них «хорошо»; «хорошо», если не более одной оценки «удовлетворительно»; «удовлетворительно», если две и более оценок «удовлетворительно»; «неудовлетворительно», если одна оценка «неудовлетворительно», а остальные не выше чем «удовлетворительно» или две оценки «неудовлетворительно».

## 5. Вопросы к экзаменупо дисциплине микропроцессоры в электронных устройствах

- 1. Позиционные системы счисления
- 2. Перевод целых десятичных чисел в двоичную форму.
- 3. Перевод дробной части в двоичную систему.
- 4. Шестнадцатиричная система счисления, перевод из шестнадцатиричной системы в десятичную.
  - 5. Бит, байт слово, двойное слово.
  - 6. Сложение целых десятичных чисел.
- 7. Дополнительный и обратный коды, вычитание целых двоичных чисел.
  - 8. Представление чисел с плавающей запятой.
  - 9. Представление символов.
- 10. Байтовая адресация памяти, прямой и обратный порядок байтов в словах.
- 11. Непосредственная, регистровая и абсолютная типы адресации, пример команд.
  - 12. Индексная и индексная базовая адресация, пример применения.
- 13. Относительная адресация через счетчик команд, пример применения.
- 14. Автоинкрементная и автодекрементная адресация, пример применения.
  - 15. Стек, организация, стековая адресация, пример использования.

- 16. Команды перемещения данных между регистрами и ячейками памяти.
  - 17. Регистр-аккумулятор, назначение, особенности использования.
  - 18. Регистровые пары, назначение, загрузка регистровых пар.
  - 19. Регистр флагов, флаги S,Z,C,P назначение, использование.
  - 20. Линейный код и организация ветвлений.
  - 21. Команды передачи управления, организация циклов.
  - 22. Команды условных и безусловных переходов.
  - 23. Подпрограммы назначение, вызов, возврат, передача параметров.
- 24. Команды обработки данных, логические и арифметические операции.
- 25. Прерывание понятие, назначение, команды обработки прерываний, векторные прерывания.
  - 26. Процессор базовые концепции. Шинная архитектура.
  - 27. Структура модели процессора.
- 28. Последовательность микрокоманд при пересылке данных между регистрами.
- 29. Последовательность микрокоманд при выполнении арифметических и логических операций.
  - 30. Структура простейшего АЛУ.
- 31. Последовательность микрокоманд при выборке-записи слова в память.
- 32. Аппаратное управление элементами процессора, понятие микрокоманды.
- 33. Программное управление элементами процессора, микропрограмма.
- 34. Микропроцессор KP580BM80A (INTEL 8085) структура, состав системы, память, адресное пространство, периферия.
- 35. Микропроцессор KP580BM80A (INTEL 8085) сигналы управления, синхронизации, понятие машинных тактов и машинного цикла, назначение регистра состояния.
- 36. Основные принципы RISC архитектуры. Сопоставление RISC и CISC архитектур.

# 6. Типовые задания к лабораторным занятиям по дисциплине "Микропроцессоры в электронных устройствах"

#### Задание №1

- 1. Прочитать содержимое ячеек памяти с адреса 02СВ  ${\rm H}$  по 02D4  ${\rm H}.$
- 2. Программа сравнения чисел, содержащаяся в ячейках 84F0 H и 84F1 H. Программа загружается с адреса 8400.

Исходные данные для трёх вариантов:

- 1. (84F0) = 218 D, (84F1) = 55 D
- 2. (84F0) = 55 D, (84F1) = 218 D
- 3. (84F0) = 13 D, (84F1) = 13 D

#### Задание №2

- 1. Сложить содержимое трёх ячеек (02C0, 02C1 и 02C2). Результат занести в ячейку 821C.
- 2. Сравнить содержимое ячеек 03С0 и 03С1. Если в ячейке 03С1 число меньше, то включить светодиодный индикатор «Флаг  $\mathbb{Z}$ », иначе закончить программу.

#### Задание №3

Составить программу с использованием системы индикации микро ЭВМ «Электроника-580» для следующего алгоритма:

В ячейках памяти хранятся следующие шестнадцатеричные числа: (8400) = 1A H, (8401) = FB H

- 1. сложить числа, хранящиеся в ячейках памяти 8400 и 8401;
- 2. проанализировать содержимое младшего разряда результата;

| <u> </u>          | · · <u> </u> |                   | •   |   |
|-------------------|--------------|-------------------|-----|---|
| 3. если оно равно | * * *        | если оно не равно |     |   |
| нулю то на первый | * _          | нулю, то на пятый | _ * | • |
| индикатор вывести | * _          | индикатор вывести | _ * | • |
| СИМВОЛ            | * _          | СИМВОЛ            | _ * | • |
|                   |              |                   |     |   |
|                   | * _          |                   | _ * |   |
|                   | * _          |                   | _ * | • |
|                   | * _          |                   | _ * | • |
|                   | ***          |                   |     |   |

(знаком «-» отмечены погашенные сегменты индикаторов)
Числа в ячейки памяти загрузить с помощью программы «монитор»

#### Задание №4

Написать подпрограмму возведения числа в заданную степень  $(x^y)$ . Число, степень и результат содержатся в теле основной программы.

## 7. Пример лабораторной работы по дисциплине "Микропроцессоры в электронных устройствах"

## Работа 4 ОРГАНИЗАЦИЯ ПОДПРОГРАММ И ИСПОЛЬЗОВАНИЕ СТЕКА

<u>Цель работ</u>ы: изучение основ разработки подпрограмм.

1.Общие сведения

При разработке программ часто имеет место ситуация, когда неоднократно необходимо выполнять некоторую последовательность команд. Для сокращения размера программы и уменьшения объема памяти, выделяемого под программу, такие участки программы оформляются в виде подпрограмм. Подпрограммы не только позволяют экономить ресурсы ЭВМ, но и являются мощным средством разработки программного обеспечения. Поскольку подпрограмма является самостоятельнымпрограммным модулем, она может быть написана и отлажена независимо от основной программы, что ускоряет отладку всей 'программы. Отлаженные подпрограммы можно хранить в библиотеках и использовать их по мере необходимости.

Подпрограмма - это последовательность команд, выполнение которых может быть вызвано из любого места программы необходимоеколичество раз. Процесс передачи управления к подпрограмме называется вызовом. Данные и адреса, требуемые для работы подпрограммы, называются входными параметрами, а информация, передаваемая в основную программу, по окончании ее выполнения - выходными параметрами. Обращение к подпрограмме выполняется командой CALLADR, где ADR - адрес первой выполняемой команды под программы, а возврат -командой RET.

#### 2. Стек

Стеком называют часть памяти, доступ к которой организован по принципу: "последним записан - первым считан". Наиболее важное использованиестека связано с реализацией вызова подпрограмм. Команда CALLADR не только осуществляет переход по указанному адресу, но и включает в стек текущее содержимое программного счетчика РС, т.е. адресвозврата из подпрограммы. При входе в. подпрограмму в стеке запоминается содержимое регистров, которые использует подпрограмма. Перед выходом из подпрограммы эти данные восстанавливаются и удаляются из стека. Подпрограмма заканчивается однобайтовой командой возврата RET, которая извлекает из стека адрес возврата и передает его ь программный счетчик.

При обращении к стеку используется косвенная адресация через специальный регистр - указатель стека (УС или SP - stackpoint). При записи данных в стек производится автоматический декремент указателя стека, а при считывании - инкремент. Помещение данных в стек называется включением (PUSH), а обратное действие - извлечением (POP). Адрес последнего включенного в стек элемента называется вершиной стека.

В стек записывается содержимое 16-разрядных регистров. В ячейку по адресу (SP)-1 заносится старший байт регистра, а по адресу (SP)-2 - младший байт регистра. После выполнения команды содержимое указателя стека уменьшается на 2. При извлечении из вершины стека в младший байт регистра записывается содержимое ячейки с адресом (SP), а в старший байт регистра - содержимое ячейки с адресом (SP)+1. При этом содержимое указателя стека увеличивается на 2 (см. рисунок 1).

При работе со стеком в начале программы необходимо инициализировать указатель стека - командой LXISP, ADR загрузить я регистр SP адрес,

который на 1 больше начального адреса области стека (при включении ЭВМ монитор загружает в SP адрес 83E0). В начале каждой подпрограммы командами PUSHв стеке сохраняется содержимое тех регистров, которые используются в подпрограмме. Перед выходом из подпрограммы командами POP восстанавливается содержимоерегистров. Восстановление регистровыполняется в обратной последовательности по отношению к их записи в стек. Все операции со стеком должны быть сбалансированы - каждая подпрограмма должна содержать одинаковое количество команд PUSH и POP и заканчиваться командой RET.

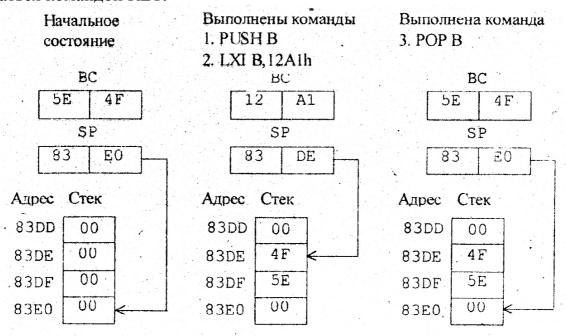



Рис.1. Обращение к стеку

## 3. Пример программы

Подпрограмма вычисляет среднее значение двух чисел. Исходные числа размещаются в двух ячейках сразу за командой вызова подпрограммы, а результат помещается в следующей ячейке памяти.

| результат помещается в следующей и тенке намити. |         |       |       |      |                                       |
|--------------------------------------------------|---------|-------|-------|------|---------------------------------------|
| Адрес                                            | Содерж. | Метки | Мнемо | Опе- | Коментарий                            |
|                                                  | ячейки  |       | ника  | ранд |                                       |
| 8200                                             | CD      |       | CALL  | AVR  | вызов подпрограммы вычисления         |
| 8201                                             | 50      |       |       |      | среднего двух чисел                   |
| 8202                                             | 82      |       |       |      |                                       |
| 8203                                             | 07      |       | DB    | 07   | первое число                          |
| 8204                                             | 0F      |       | DE    | 0F   | второе число                          |
| 8205                                             |         |       |       |      | ячейка памяти для хранения среднего   |
| 8206                                             | E7      |       | RST   |      | с этой ячеки продолжается программа   |
|                                                  |         |       |       |      |                                       |
| 8250                                             | E3      | AVR:  | XTHL  |      | сохранение HL всеке, выборка адреса   |
|                                                  |         |       |       |      | первого числа в региструвую пару HL   |
| 8251                                             | F5      |       | PUSH  | PSW  | сохранение слова состояния процессора |
| 8252                                             | 7E      |       | MOV   | A,M  | заносим в аккумулятор первое число    |
| 8253                                             | 23      |       | INX   | Н    | получаем адрес второго числа          |
| 8254                                             | 86      |       | ADD   | M    | суммируем два числа                   |

| 8255 | A7 | ANA  | A   | очистка флага переноса            |
|------|----|------|-----|-----------------------------------|
| 8256 | 1F | RAR  |     | делении суммы на 2 сдвигом вправо |
| 8257 | 23 | INX  | Н   | получаем адрес результата         |
| 8258 | 77 | NOV  | M,A | запись результата в память        |
| 8259 | 76 | INX  | Н   | адрес возврата из подпрограммы    |
| 825A | F5 | POP  | PSW | восстановлении слова состояния    |
| 825B | E3 | XTHL |     | восстановление адреса возврвта    |
| 825C | C9 | RET  |     | возврат из подпрограммы           |

### 4.Задания для подготовки к работе

Ознакомиться с принципами организации подпрограмм и использования стека в микроЭВМ. Подготовить отчет, в котором должны быть:

- 1. Описаниекоманд CALL, RET, RST6, PUSH PSW, POP H, XTHL.
- 2. Бланк для программ по образцу таблиц описания.

## 5.Задания к лабораторной работе

- 5.1. Исследовать подпрограмму расчета среднего двух чисел Порядок выполнения задания:
- 1. Ввести в микроЭВМ программу.
- 2. Проверить правильность работы программы в режиме ОТЛАДКА.
- 3. Дополнить программу командами вычисления среднего значения чисел 80 и 80. Повторить выполнение программы и объяснить полученный результат.
- 4. Записать d ячейку 8255 код 00. Повторить выполнение программы и объяснить полученный результат.
  - 5.2. Разработать и отладить программу.

Порядок выполнения задания:

- 1. Получить у преподавателя задание на разработку программы.
- 2. Составить алгоритм\* программу на языке ассемблера и перевести в машинные коды, заполнив все колонки бланка программы.
  - 3. Включить микроЭВМ и ввести в память программу.
- 4. Отладить программу и продемонстрировать ее работу преподавателю.

## 6. Содержание отчета

- 1. Выполненные задания при подготовке к работе (п.4).
- 2. Результаты выполнения заданий п.5.1.
- 3. Задание на разработку программы (п.5.2). Алгоритм в виде блоксхемы, полностью оформленный бланк программы на языке ассемблера. Результаты работы программы с их объяснением.

## 7.Вопросы для подготовки к работе

- 1. С какой целью используются подпрограммы?
- 2. Как можно организовать передачу параметров в подпрограмму?
- 3. Дайте определение стека, указателя стека, вершины и дна стека.
- 4.В какой последовательности записывается и считывается из стека содержимое PSW при выполнении команд PUSH PSW и POP PSW?

- 5. Опишите способы адресации, применяемые при обращении к стеку.
- 6. Какими командами можно задать или изменить область памяти под стек?
- 7. В чем разница между командами CALL и RST?

Полный перечень заданий и вопросов к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями, приведен в соответствующих методических указаниях.

1. Микропроцессоры в электронных устройствах: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: А.В. Зуев. Рязань, 2011. 43 с.