МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА ЭЛЕКТРОННЫЕ ПРИБОРЫ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

УСТРОЙСТВА ИНФОРМАЦИОННОЙ ЭЛЕКТРОНИКИ

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (зачтено, незачтено).

1 Паспорт фонда оценочных средств по дисциплине

№ п/ п	№ разде ла	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контроли- руемой компетен- ции (или её части)	Этап формирования контролируемой компетенции (или её части)	Наименование оценочного средства
1	1	Введение. Назначение и состав семейства 32 разрядных микроконтроллеров семейства AT32UC3A.	ПК-3.2	Лекционные и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по самостоятельной работе, зачёт
2	2	Универсальный контроллер ввода-вывода микроконтроллера семейства AT32UC3	ПК-3.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по самостоятельной и практической работе, зачёт
3	3	Контроллер прерываний микроконтроллера семейства AT32UC3	ПК-3.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по самостоятельной и практической работе, зачёт
4	4	Таймер-счётчик микроконтроллера семейства AT32UC3A	ПК-3.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по самостоятельной и практической работе, зачёт
5	5	Последовательный периферийный интерфейс (SPI)	ПК-3.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по самостоятельной и практической работе, зачёт
6	6	Аналого-цифровой преобразователь	ПК-3.2	Лекционные, практические и	Отчеты по самостоятельной и

		микроконтроллера семейства AT32UC3A		самостоятельные занятия обучающихся в течение учебного семестра	практической работе, зачёт
7	7	Цифро-аналоговый преобразователь микроконтроллера семейства AT32UC3.	ПК-3.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по самостоятельной и практической работе, зачёт
8	8	Менеджер питания микроконтроллера семейства AT32UC3A	ПК-3.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по самостоятельной и практической работе, зачёт
9	9	Счётчик реального времени, сторожевой таймер, последовательный порт микроконтроллера (USART) семейства AT32UC3.	ПК-3.2	Лекционные и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по самостоятельной работе, зачёт

2 Формы текущего контроля

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях, по результатам выполнения обучающимися индивидуальных заданий, проверки качества конспектов лекций и иных материалов.

Текущий контроль по дисциплине «Устройства информационной электроники» проводится в виде проверки заданий, выполняемых самостоятельно, на лабораторных и практических занятиях. Учебные пособия, рекомендуемые для самостоятельной работы и подготовки к лабораторным занятиям обучающихся по дисциплине «Устройства информационной электроники», содержат необходимый теоретический материал.

3 Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является зачёт. К зачёту допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения экзамена — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

4 Критерии оценки компетенций обучающихся и шкалы оценивания

Оценка степени формирования указанных выше (п.п.1 и 6.1) контролируемых компетенций у обучающихся на различных этапах их формирования проводится преподавателем во время лекций, консультаций и лабораторных занятий по шкале оценок «зачтено» – «не зачтено». Текущий контроль по дисциплине проводится в виде опросов по

отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, и на лабораторныхи практических занятиях. Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных, практических занятий и самостоятельной работы оценивается по критериям шкалы оценок - «зачтено» — «не зачтено». Освоение материала дисциплины и достаточно высокая степень формирования контролируемых компетенций обучающегося (эффективное и своевременное выполнение всех видов учебной работы, предусмотренных учебным планом и настоящей программой) служат основанием для допуска обучающегося к этапу промежуточной аттестации - зачёту.

Целью проведения промежуточной аттестации (зачёта) является проверка общекультурных, общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Устройства информационной электроники».

Уровень теоретической подготовки студента определяется составом и степенью формирования приобретенных компетенций, усвоенных теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач целенаправленного применения различных групп материалов в электронной технике.

Зачёт организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, является утвержденный экзаменационный билет, содержание которого определяется ОПОП и рабочей программой предмета. Экзаменационный билет включает в себя, как правило, два вопроса относящийся к теоретическим разделам дисциплины.

Оценке на заключительной стадии экзамена подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора.

Применяются следующие критерии оценивания компетенций (результатов):

- -уровень усвоения материала, предусмотренного программой;
- -умение анализировать материал, устанавливать причинно-следственные связи;
- полнота, аргументированность, убежденность ответов на вопросы;
- -качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- -использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

Применяется двухбальная шкала оценок: "зачтено", "не зачтено", что соответствует шкале "компетенции студента полностью соответствуют требованиям $\Phi \Gamma OC$ BO", , " компетенции студента не соответствуют требованиям $\Phi \Gamma OC$ BO".

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

«Зчтено»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

«Не зачтено»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

5 Типовые контрольные вопросы по дисциплине «Устройства информационной электроники»

1. Блок-схема алгоритма создания и отладки рабочего проекта до загрузки кода в кристалл микроконтроллера в среде Atmel 6 Studio.

- 2. Основные характеристики микроконтроллеров семейства AVR32
- 3. Центральный процессор семейства AT32UC3
- 4. Организация прерываний в микроконтроллере семейства AT32UC3
- 5. Запросы прерываний и исключений
- 6. Вызов прерываний в программе
- 7. Мультиплексирование периферии на линии GPIO
- 8. Основные особенности менеджера питания
- 9. Система синхронизации микроконтроллера AVR32
- 10. Система фазовой автоподстройки частоты в микроконтроллере AVR32
- 11. Подрежимы спящего режима микроконтроллера AVR32
- 12. Управление универсальными синхросигналами микроконтроллера
- 13. Счётчик реального времени: особенности и функциональное описание
- 14. Сторожевой таймер: основные особенности и функциональное описание
- 15. Контроллер прерываний: особенности и функциональное описание
- 16. Немаскируемые прерывания
- 17. Контроллер внешних прерываний
- 18. Контроллер ввода-вывода общего назначения
- 19. Последовательный периферийный интерфейс (SPI): особенности и функциональное описание
- 20. Режимы работы интерфейса SPI
- 21. Программирование GPIO
- 22. Универсальный синхронно-асинхронный приёмопередатчик (USART): основные особенности
- 23. USART: обмен в асинхронном режиме
- 24. USART: обмен в синхронном режиме
- 25. USART: аппаратная процедура установления связи
- 26. Таймеры-счётчики: общее описание
- 27. Операционные режимы таймеров-счётчиков
- 28. Операции режима захвата в таймере-счётчике
- 29. Операции режима формирования в таймере-счётчике
- 30. Аналого-цифровой преобразователь: общее описание
- 31. Аналого-цифровой преобразователь: функциональное описание
- 32. Аудио ЦАП битового потока: функциональное описание
- 33. Пример программирования таймера-счётчика
- 34. Пример программирования ЦАП битового потока
- 35. Конфигурирование АЦП
- 36. Расчёт времени выполнения аналого-цифрового преобразования
- 37. Варианты запуска АЦП в микроконтроллера АТ32UC3A0512
- 38. Внешний и программный триггер для таймера-счётчика

6 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

В качестве методических материалов, определяющих процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций у обучающихся, используются перечни контрольных вопросов, приведенных в методических указаниях к лабораторным и самостоятельным занятиям по дисциплине «Устройства информационной электроники», приведенные в п.6.4 критерии оценки компетенций обучающихся и оценочные средства (п.6.1).

Кроме того, в лаборатории, где проводятся лабораторные работы на первом занятии студентам подробно излагаются и в дальнейшем рекомендуются для постоянного применения специальные методические материалы, регламентирующие порядок проведения лабораторных работ, оформления и защиты отчетов, порядок и критерии оценки письменных и устных отчетов

обучающихся по дисциплине (или ее части). К выполнению лабораторной работы не допускаются студенты, не оформившие отчеты по лабораторным работам или не защитившие отчетов по двум работам.

Методические требования к оформлению отчетов по лабораторным работам

Отчет по лабораторной работе должен содержать следующие элементы:

- номер, название и цель работы;
- чертеж блок-схемы программы, выполненный карандашом по линейке с соблюдением требований ЕСКД;
- текст программы на языке Си;
- карту распределения ресурсов;
- выводы и анализ полученных экспериментальных зависимостей.

При выполнении лабораторной работы каждому студенту необходимо иметь полностью оформленный отчет по ранее выполненной работе и отчет по выполняемой работе, содержащий все перечисленные элементы (за исключением экспериментальных данных в таблице, графиков, выводов).

Методические требования к структуре отчета по самостоятельной работе:

- 1) титульный лист;
- 2) часть I «Аналитическая часть» анализ раздела индивидуального задания по дисциплине, формулировка актуальности темы, цели и задач разработки или исследования объекта и предмета разработки или исследования, оценка современного состояния изучаемой проблемы;
- 3) часть II «Основная часть» результаты выполнения основной части раздела индивидуального задания по дисциплине (обзор научно-методических информационных источников современных научных статей и монографий по теме, выявление вопросов, требующих углубленного изучения; формирование и обоснование собственной точки зрения на рассматриваемые проблемы и возможные пути их разрешения; необходимые расчеты, моделирование и другие задания, предусмотренные темой самостоятельной работы. Материал не должен иметь только компилятивный характер, но обладать новизной, практической значимостью, отражать точку зрения автора на изучаемые проблемы и результаты проделанной работы.
- 4) часть III «Заключение» заключение и выводы по результатам выполненной работы;
 - 5) список использованных научных и научно-методических источников;
 - 6) приложения (при необходимости).

Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий (после каждой лабораторной работы) и самостоятельной работы (на консультациях) оценивается по критериям шкалы оценок - «зачтено» – «не зачтено».

Оценки "зачтено" заслуживает обучающийся, обнаруживший знания основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, знакомый с основной литературой, рекомендованной программой, справляющийся с выполнением графика и содержания заданий, предусмотренных учебным планом и настоящей программой.

Оценка "не зачтено" выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебного материала, допустившему принципиальные ошибки в выполнении заданий, предусмотренных учебным планом и настоящей программой.

1 Перечень компетенций с указанием этапов их формирования

В соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки магистров 11.04.04 «Электроника и наноэлектроника» при освоении дисциплины «Устройства информационной электроники» формируются следующие компетенции: ПК-2, ПК-3, ПК-8.

Указанные компетенции формируются в соответствии со следующими этапами:

- 1) формирование и развитие теоретических знаний, предусмотренных указанными компетенциями (лекционные, лабораторные и практические занятия, самостоятельная работа студентов);
- 2) приобретение и развитие практических умений предусмотренных компетенциями (лабораторные, практические работы, самостоятельная работа студентов);
- 3) закрепление теоретических знаний, умений и практических навыков, предусмотренных компетенциями, в ходе выполнения конкретных заданий на лабораторных работах и их защитах, ответов на тестовые задания (текущий контроль), а также в процессе подготовки и сдачи отчетов по самостоятельной работе и зачёта (промежуточный контроль).

2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

При достаточном качестве освоения более 80% приведенных знаний, умений и навыков преподаватель оценивает освоение данной компетенции в рамках настоящей дисциплины на эталонном уровне, при освоении более 60% приведенных знаний, умений и навыков — на продвинутом, при освоении более 40% приведенных знаний умений и навыков — на пороговом уровне. При освоении менее 40% приведенных знаний, умений и навыков компетенция в рамках настоящей дисциплины считается неосвоенной.

Уровень сформированности каждой компетенции на различных этапах ее формирования в процессе освоения данной дисциплины оценивается в ходе текущего контроля успеваемости и представлено различными видами оценочных средств.

Оценке сформированности в рамках данной дисциплины подлежат перечисленные ниже компетенции.

- ПК-2 Способность разрабатывать эффективные алгоритмы решения сформулированных задач с использованием современных языков программирования и обеспечивать их программную реализацию.
- ПК-3 Готовность осваивать принципы планирования и методы автоматизации эксперимента на основе информационно-измерительных комплексов как средства повышения точности и снижения затрат на его проведение, овладевать навыками измерений в реальном времени.
- ПК-8 Способность выполнять работы по технологической подготовке производства материалов и изделий электронной техники.

Преподавателем оценивается содержательная сторона и качество материалов, приведенных в отчетах студента по самостоятельной и лабораторным работам. Кроме того, преподавателем учитываются ответы студента на вопросы по соответствующим видам занятий при текущем контроле:

- контрольные опросы;
- допуски и защиты лабораторных работ;
 Принимается во внимание знания обучающимися:

- языка программирования Си (ПК-2);
- архитектуры современных 32-х разрядных микроконтроллеров семейства AT32UC3 (ПК-8);
- основных принципов организации микропроцессорных информационно-измерительных систем для проведения эксперимента в реальном времени (ПК-3);
- основных методов теории планирования эксперимента и обработки данных анализа и систематизации результатов в соответствии с поставленной задачей (ПК-3).
 наличие умений:
 - профессионально программировать работу периферии и интерфейсов микроконтроллера семейства AT32UC3 на языке Си (ПК-2);
- разрабатывать эффективные алгоритмы программ (ПК-2, ПК-8);
- проектировать устройства с использованием 32-х разрядных микроконтроллеров (ПК-8);
 обладание:
- навыками программирования в интегрированных средах (ПК-2);
- навыками разработки электронных устройств для экспериментальных измерений в реальном времени (ПК-3);
- навыками программирования 32-х разрядных микроконтроллеров (ПК-8).

Критерии оценивания уровня сформированности компетенций ПК-2, ПК-3, ПК-8 в процессе выполнения и защиты отчетов по самостоятельной и лабораторным работам:

- 41%-60% правильных ответов соответствует пороговому уровню сформированности компетенции на данном этапе ее формирования;
- 61%-80% правильных ответов соответствует продвинутому уровню сформированности компетенции на данном этапе ее формирования;
- 81%-100% правильных ответов соответствует эталонному уровню сформированности компетенции на данном этапе ее формирования.

Сформированность уровня компетенций не ниже порогового является основанием для допуска обучающегося к промежуточной аттестации по данной дисциплине.

Формой промежуточной аттестации по данной дисциплине является зачёт, оцениваемый по принятой в ФГБОУ ВО «РГРТУ» двухбальной системе: «зачёт», «незачёт».

Критерии оценивания промежуточной аттестации представлены в таблице 1.

Таблица 1 - Критерии оценивания промежуточной аттестации

Шкала оценивания	Критерии оценивания	
«зачтено»	студент должен: продемонстрировать достаточно полное знание	
	материала; продемонстрировать знание основных теоретических	
	понятий; достаточно последовательно, грамотно и логически	
	стройно излагать материал; уметь сделать достаточно	
	обоснованные выводы по излагаемому материалу; ответить на	
	все вопросы билета; продемонстрировать умение правильно	
	выполнять практические задания, предусмотренные программой,	
	при этом возможно допустить непринципиальные ошибки.	
«не зачтено»	ставится в случае: незнания значительной части программног	
	материала; не владения понятийным аппаратом дисциплины;	
	существенных ошибок при изложении учебного материала;. Как	
	правило, оценка «не зачтено» ставится студентам, которые не	
	могут продолжить обучение по образовательной программе без	
	дополнительных занятий по соответствующей дисциплине	
	(формирования и развития компетенций, закрепленных за данной	
	дисциплиной). Оценка «не зачтено» выставляется также, если	
	студент после начала зачёта отказался его сдавать или нарушил	

правила сдачи зачёта (списывал, подсказывал, обманом пытался получить более высокую оценку и т.д.).

3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Типовые задания в рамках самостоятельной работы студентов для укрепления теоретических знаний, развития умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 1. Возможности интегрированной среды AtmelStudio 6.
- 2. Управление выводом данных на линию порта с помощью контроллера GPIO. Пример программы.
 - 3. Расчёт номера и линии порта GPIO по номеру линии GPIO.
 - 4. Контроллер внешних прерываний. Пример программы.
 - 5. Немаскируемые прерывания.
 - 6. Программирование таймера в режиме захвата.
 - 7. Асинхронный режим работы последовательного порта. Пример программы.
 - 8. Программирование обмена по интерфейсу SPI.
 - 9. Режимы работы менеджера питания.
 - 10. Программирование сторожевого таймера.
 - 11. Работа последовательного порта в аппаратном режиме.

Примеры **заданий** и **контрольных вопросов** к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями.

Лабораторная работа № 3

Программирование микроконтроллера AT32UC3A в среде Atmel Studio 6.0 с использованием прерываний

Задание

- 1. Составьте программу, обеспечивающую непрерывное переключение светодиода через каждые 0,5 с. Номер светодиода задаётся преподавателем.
- 2. Составьте программу, запускающую непрерывное переключение цвета свечения 2-цветного светодиода через каждые 0,5 с в течение 10 с при нажатии кнопки. Повторное нажатие кнопки должно выключить 2-цветный светодиод. Нажатие кнопки должно вызывать прерывание, запускающее переключение светодиодов или его выключение. Номер кнопки задаётся преподавателем.
- 3. Составьте программу с использованием прерываний от 2-х кнопок. Нажатие одной кнопки вызывает свечение только зелёного цвета 2-цветного светодиода, нажатие другой только красного.

В таблице приведено соответствие линий порта и GPIO.

Контрольные вопросы

- 1. Для чего используется контроллер ввода-вывода общего назначения (GPIO)?
 - 2. Что такое периферийная функция?
- 3. Какое количество периферийных функций может мультиплексироваться на выводе порта микроконтроллера AT32UC3A0512?

- 4. Каким образом можно включить на выводе порта его периферийную функцию?
- 5. Каким образом можно переключаться с одной периферийной функции на другую?
- 6. Каким образом производится настройка вывода порта микроконтроллера для работы на выход?
 - 7. Что отображается в регистре PVR?
 - 8. Каково назначение регистров OVRS, OVRC, OVRT?

Полный перечень **заданий** и **вопросов** к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями, приведен в соответствующих методических указаниях.

1. Устройства информационной электроники. Часть 1: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост. В. К. Базылев.— Рязань: РГРТУ, 2016. — 40 с.

Список **типовых контрольных вопросов** для оценки уровня сформированности знаний, умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 39. Блок-схема алгоритма создания и отладки рабочего проекта до загрузки кода в кристалл микроконтроллера в среде Atmel 6 Studio.
- 40. Основные характеристики микроконтроллеров семейства AVR32
- 41. Центральный процессор семейства AT32UC3
- 42. Организация прерываний в микроконтроллере семейства AT32UC3
- 43. Запросы прерываний и исключений
- 44. Вызов прерываний в программе
- 45. Мультиплексирование периферии на линии GPIO
- 46. Основные особенности менеджера питания
- 47. Система синхронизации микроконтроллера AVR32
- 48. Система фазовой автоподстройки частоты в микроконтроллере AVR32
- 49. Подрежимы спящего режима микроконтроллера AVR32
- 50. Управление универсальными синхросигналами микроконтроллера
- 51. Счётчик реального времени: особенности и функциональное описание
- 52. Сторожевой таймер: основные особенности и функциональное описание
- 53. Контроллер прерываний: особенности и функциональное описание
- 54. Немаскируемые прерывания
- 55. Контроллер внешних прерываний
- 56. Контроллер ввода-вывода общего назначения
- 57. Последовательный периферийный интерфейс (SPI): особенности и функциональное описание
- 58. Режимы работы интерфейса SPI
- 59. Программирование GPIO
- 60. Универсальный синхронно-асинхронный приёмопередатчик (USART): основные особенности
- 61. USART: обмен в асинхронном режиме
- 62. USART: обмен в синхронном режиме
- 63. USART: аппаратная процедура установления связи
- 64. Таймеры-счётчики: общее описание
- 65. Операционные режимы таймеров-счётчиков
- 66. Операции режима захвата в таймере-счётчике
- 67. Операции режима формирования в таймере-счётчике
- 68. Аналого-цифровой преобразователь: общее описание
- 69. Аналого-цифровой преобразователь: функциональное описание

- 70. Аудио ЦАП битового потока: функциональное описание
- 71. Пример программирования таймера-счётчика
- 72. Пример программирования ЦАП битового потока
- 73. Конфигурирование АЦП
- 74. Расчёт времени выполнения аналого-цифрового преобразования
- 75. Варианты запуска АЦП в микроконтроллера АТ32UC3A0512
- 76. Внешний и программный триггер для таймера-счётчика

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ФГБОУ ВО "РГРТУ", РГРТУ, Серебряков Андрей Евгеньевич, и.о. заведующего кафедры $\mathfrak{I}\Pi$

09.09.24 17:04 (MSK)

Простая подпись