МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет имени В.Ф. Уткина»

КАФЕДРА «ЭЛЕКТРОННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ»

МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ «ДИСКРЕТНАЯ МАТЕМАТИКА»

Специальность

27.05.01 Специальные организационно-технические системы

Специализация

Информационные технологии и программное обеспечение в специальных организационно-технических системах

Квалификация (степень) выпускника — инженер-системотехник

Форма обучения — очная, очно-заочная

1. ВОПРОСЫ К ПРАКТИЧЕСКИМ И ЛАБОРАТОРНЫМ РАБОТАМ

- 1. Перечислите основные способы представления графов.
- 2. Покажите на примере прямое и обратное соответствия для заданной вершины.
- 3. Чему равна сумма степеней всех вершин неориентированного графа?
- 4. В чем отличия матричного представления ориентированных и неориентированных графов?
- 5. В чем особенности представления графа матрицей смежности?
- 6. В чем особенности представления графа матрицей инцидентности?
- 7. По заданному преподавателем изображению графа построить матрицы смежности и инцидентности.
 - 8. По заданной преподавателем матрице смежности (инцидентности) изобразить граф.
 - 9. Дайте определение пути, маршрута, цепи.
 - 10. Как определяется длина пути не взвешенного графа?
 - 11. Формулировка задачи нахождения кратчайшего пути на графе.
- 12. Ограничения применимости алгоритма Дейкстры для нахождения кратчайшего пути на графе.
 - 13. Как определяются постоянные пометки в алгоритме Дейкстры и что они выражают?
 - 14. Дайте определение цикла, контура.
 - 15. Какой цикл называется эйлеровым? Критерий существования эйлерова цикла.
 - 16. Какой цикл называется гамильтоновым?
 - 17. Для чего осуществляется приведение матрицы расстояний в задаче коммивояжера?
 - 18. В чем сущность метода ветвей и границ?
 - 19. Какие элементы составляют множество решений G0?
- 20. Как определяется нижняя граница длины гамильтонова цикла для каждого из разбиваемых подмножеств решений?
- 21. Как формируется матрица расстояний для каждого из разбиваемых подмножеств решений?
 - 22. Математическая постановка транспортной задачи.
 - 23. Как определяется исходный план перевозок?
 - 24. Что выражает потенциал пустой ячейки в таблице распределения?
 - 25. Как строятся многоугольники замены?
 - 26. Чем характеризуется открытый тип транспортной задачи?
 - 27. Дайте определение дерева; ориентированного дерева.
 - 28. Какое дерево называется остовым?
 - 29. Свойства остовых деревьев. Теорема Кэли.
 - 30. Что называется корнем дерева?
 - 31. Как преобразовать неориентированное дерево в ориентированное?
 - 32. Сколько ребер содержит остовое дерево графа?
 - 33. Сформулируйте задачу раскраски графа.
 - 34. Какой граф называется г-хроматическим?
 - 35. Что называется хроматическим числом графа?
 - 36. Нижняя и верхняя оценка хроматического числа.
 - 37. Во сколько цветов можно раскрасить планарный граф?
 - 38. Во сколько цветов можно раскрасить полный граф?
 - 39. Эвристический алгоритм раскраски графа
 - 40. Какие графы называются гомеоморфными?
 - 41. Дайте определение плоского (планарного) графа.
 - 42. Сформулируйте критерии планарности графов.
 - 43. Какие фигуры являются запрещенными при определении планарности графа?
 - 44. Что называется числом планарности графа?
 - 45. Как определяется толщина графа?
- 46. По заданному преподавателем графу определите, является ли он планарным. Найдите его толщину.
 - 47. На каких операциях алгебры логики основаны методы минимизации булевых функций?
 - 48. В чем заключается основная идея метода Карно?
- 49. Какие значения принимают переменные строк и столбцов при минимизации функции четырех переменных?

- 50. На сколько разрядов должны отличатся соседние значения переменных в строках и столбцах карты Карно?
 - 51. Как строится импликантная матрица?
 - 52. Что называют существенной импликантой?
 - 53. Какая функция называется слабоопределенной?
 - 54. Как задается слабоопределенная булева функция через десятичные эквиваленты?
 - 55. Перечислите основные этапы минимизации слабоопределенных булевых функций.
 - 56. Чем отличается автомат Мили от автомата Мура?
 - 57. Какие существуют способы задания логики работы автомата?
- 58. Нарисуйте граф переходов автомата, реализующего продажу билета стоимостью 3 руб. Автомат может принимать деньги номиналом 1,2 и 3 руб., а при превышении суммы возвращает деньги и не продает билет. Какой автомат у Вас получился?
 - 59. Какие состояния называют эквивалентными?
 - 60. В чем заключается основная идея метода Хаффмена?
 - 61. Как производится кодирование внутренних состояний автомата?
 - 62. На чем основан алгоритм кодирующего дерева?
- 63. Сколько потребуется элементов памяти, если число внутренних состояний автомата равно10?
 - 64. Расскажите принцип построения таблицы переходов?
 - 65. Как формируется функция возбуждения?
 - 66. Как записывается выходной сигнал?
 - 67. Какие логические связки применяются при построении схемы автомата?
 - 68. Поясните логику работы триггера со счетным входом.
 - 69. Что называется противоречием перехода триггера?
 - 70. Как устраняются противоречия переходов?
- 71. Объясните, как определяется размерность гиперкуба при формализации выходных функций?

Рекомендуемая литература:

- 1. Корячко В.П. Гостин А.М., Бакулев А.В., Бакулева М.А. Дискретная математика. Учебное пособие. Рязань: РГРТУ, 2011
- 2. Поздняков, С.Н. Дискретная математика: учебник для студ. вузов / С. Н. Поздняков, С. В. Рыбин. М.: Академия, 2008. 448 с.: рис., табл. + Библиогр.: с. 437-438.
 - 3. Шевелев Ю.П. Дискретная математика: учеб. пособие. Издательство: Лань, 2008. 592 с.
 - 4. Коненков А.Н. Дискретная математика: метод. указ./- Рязань, 2001. 32с.
- 5. Каширин И.Ю. Дискретная математика: метод.указ.к практ.занятиям/ РГРТУ. Рязань, 2002. 47c.
 - 6. Тарасов В.В. Дискретная математика. учеб. пособие. Рязань: РГРТУ, 2009 92с.
 - 7. Орлов Г.С. Дискретная математика. учеб. пособие, Рязань:, 2012 56с.

2. ВОПРОСЫ К ЭКЗАМЕНУ ПО ДИСЦИПЛИНЕ

- 1. Определение графа. Виды графов. Способы задания графов.
- 2. Степени вершин графа. Полустепени захода и исхода. Образы и прообразы вершин.
- 3. Достижимость и связность. Матрица достижимости. Компоненты связности.
- 4. Маршруты, цепи, циклы. Основные понятия. Виды циклов.
- 5. Кратчайший путь в графе. Алгоритм Дейкстры.
- 6. Кратчайший путь в графе. Алгоритм динамического программирования.
- 7. Кратчайший путь в графе. Алгоритм Форда-Беллмана.
- 8. Кратчайший путь в графе. Алгоритм Флойда.
- 9. Независимое множество вершин. Число внутренней устойчивости графа. Число внешней устойчивости графа.
 - 10. Раскраски. Хроматическое число графа. Алгоритм раскраски вершин графа.
 - 11. Подграф и остовной граф. Деревья. Лес. Теорема Кэли.
 - 12. Построение кратчайшего остовного дерева. Алгоритм Прима-Краскала.
 - 13. Эйлеровы циклы в неориентированных графах. Критерий существования эйлерова цикла.
 - 14. Гамильтоновы циклы на графе. Решение задачи коммивояжера методом ветвей и границ.

- 15. Транспортная задача. Виды транспортной задачи. Метод решения транспортной задачи.
- 16. Планарность графов. Плоский граф. Критерии планарности. Теорема Понтрягина Куратовского.
- 17. Потоки в сетях. Пропускная способность сети. Разрезы и мосты. Теорема ФордаФалкерсона. Алгоритм определения максимальной пропускной способности сети.
 - 18. Минимизация слабоопределенных булевых функций. Таблицы различий.
 - 19. Разложение Шенона булевых функций.
- 20. Нахождение производной булевой функции и нахождение веса производной булевой функции.
 - 21. Метод каскадов.
 - 22. Специальные классы. Таблица Поста.
 - 23. Построение булевых функцией в произвольном базисе.
 - 24. Метод Квайна.
 - 25. Алгоритм кодирующего дерева.
 - 26. Метод Хаффмана.
 - 27. Структурный синтез автомата на триггерах с счётным входом.
 - 28. Структурный синтез автомата на RS триггерах.