ПРИЛОЖЕНИЕ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Радиотехнических устройств»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Б1.О.10 «Системы локации и навигации»

Направление подготовки

11.04.01 «Радиотехника»

Программа магистратуры

Беспроводные технологии в радиотехнических системах и устройствах

Уровень подготовки

Магистратура

Формы обучения - очная

Рязань 2025 г

Оценочные материалы по дисциплине "Системы локации и навигации" содержат совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы по направлению подготовки 11.04.01 "Радиотехника" как в ходе проведения текущего контроля, так и промежуточной аттестации.

Основная задача – обеспечить оценку уровня сформированности предусмотренных ОПОП компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на практических занятиях и лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено». Количество лабораторных работ по каждому модулю определено учебным графиком.

На практических занятиях допускается использование системы «зачтено – не зачтено», или рейтинговой системы оценки, при которой, например, правильно решенная задача оценивается определенным количеством баллов. При поэтапном выполнении учебного плана баллы суммируются. Положительным итогом выполнения программы является определенное количество набранных баллов.

Промежуточный контроль по дисциплине осуществляется проведением экзамена. Форма проведения экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый может составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки.

1. Паспорт оценочных материалов по дисциплине

No	Контролируемые разделы	Код	Вид, метод, форма			
Π/Π	(темы) дисциплины	контролируемой	оценочного			
		компетенции (или	мероприятия			
		её части)				
1	2	3	4			
Радиотехнические системы						
1	Введение	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен			
2	Классификация активных помех в радиолокации и радионавигации	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен			
3	Влияние активных помех на систему первичной обработки радиолокационной и радионавигационной информации	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен			
1	Корреляционно-фильтровая схема обработки в истинно-когерентной РЛС	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен			
3	Пороговая обработка в радиолокации;	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен			

4	Стабилизация уровня ложных тревог при наличии помех с рэлеевским, логнормальным, гамма и КК законами распределения;	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен
5	Влияние шумовой и маскирующей помехи на пороговую обработку в РЛС;	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен
6	Первичная обработка радионавигационной информации в спутниковых РНС;	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен
7	Воздействие шумовой помехи на точность решения навигационной задачи в спутниковых РНС;	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен
8	Воздействие шумовой помехи на точность определения местоположения в системе РСБП;	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен
9	Ранговые обнаружители;	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен
10	Воздействие шумовой и маскирующей помехи на систему вторичной обработки радиолокационной информации	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен
11	Вторичная обработка радиолокационной информации. Стробирование отметок. Ассоциация данных. Алгоритм многогипотезного сопровождения.	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен
12	Двухдиапазонный фильтр Калмана;	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен
13	Многопозиционные радиолокационные системы	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен
14	Классификация многопозиционных систем. Достоинства;	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен
15	Обработка сигналов в бистатической РЛС.	ОПК-1, ОПК-1.1 ОПК-4, ОПК-4.1	экзамен

2. Шкала оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

«Отлично» заслуживает студент, имеющий всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Оценка «зачтено» выставляется студенту, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и контрольной работы, систематическая активная работа на семинарских занятиях.

Оценка «не зачтено» выставляется студенту, который не справился с 50% вопросов и заданий билета, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях, компонентах, этапах развития культуры у студента нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

Типовые контрольные задания или иные материалы

План практических занятий

- 1. Дальность действия радиолокационных и радионавигационных систем.
- 2. Пассивные и активные радиолокационные помехи.
- 3. Радиодальномеры.
- 4. Радиопеленгаторы.
- 5. Контрольное занятие.

3. Типовые задачи для практических занятий

Тема «Дальность действия РЛС»

- 1. Рассчитайте, во сколько раз и как изменится дальность действия когерентной и некогерентной импульсной РЛС, если скорость вращения антенны уменьшится с 18 об/мин до 6 об/мин при прочих равных условиях.
- 2. Во сколько раз и как изменится дальность действия когерентной импульсной РЛС, если длина пачки увеличится в 16 раз, длина волны уменьшится в 10 раз, а ЭПР цели увеличится в 2 раза при прочих равных условиях?
- 3. Для улучшения разрешающей способности и дальности действия длительность импульса когерентной РЛС уменьшили в 2 раза, а КНД приемопередающей антенны увеличили в 1,25 раза. Во сколько раз и как изменилась дальность действия РЛС при прочих равных условиях?
- 4. При модернизации РЛС добились уменьшения коэффициента шума приемного устройства с 5-и до 3-х, повысили мощность передатчика в 1,5 раза и увеличили КНД приемопередающей антенны в 1,2 раза. Максимальная дальность обнаружения цели с $ЭПР = 10 \text{ м}^2$ до модернизации составляла 100 км. Найдите минимальную ЭПР цели (в м²), для которой обеспечивается та же дальность обнаружения после модернизации.
- 5. Во сколько раз и как (при прочих равных условиях) изменится дальность действия РЛС с зеркальной приемопередающей антенной фиксированного радиуса при изменении несущей частоты с 1,4286 ГГц до 3 ГГц?
- 6. Во сколько раз и как изменится дальность действия РЛС при уменьшении температуры воздуха с 20°С до -20°С при прочих равных условиях?
- 7. Найдите пороговое отношение сигнал-шум (в разах) для когерентной импульсной РЛС, если она должна обеспечивать обнаружение цели с вероятностями правильного обнаружения и ложной тревоги в зоне обзора 0,9 и 10^{-6} соответственно, если число импульсов в пачке N=100, ширина сектора обзора по азимуту 360° , по углу места 45° , разрешающие способности по азимуту и углу места соответственно равны $\delta\alpha=3^{\circ}$ и $\delta\beta=15^{\circ}$, максимальная дальность $R_{\rm max}=100$ км, разрешающая способность по дальности $\delta R=150$ м.
- 8. Найти дальность прямой видимости РЛС для случая положительной рефракции при стандартной атмосфере и случая отсутствия рефракции (оба значения в км с точностью до одного знака после запятой), если высота антенны над поверхностью земли $h_{\rm a} = 25$ м, а высота полета цели $H_{\rm u} = 100$ м. Радиус Земли принять равным $R_{\rm a} = 6370$ км.
- 9. Найти дальность прямой видимости РЛС для случая положительной рефракции, при которой показатель преломления с ростом высоты на каждый километр уменьшается на $5 \cdot 10^{-5}$, и случая отсутствия рефракции (оба значения в км с точностью до одного знака после запятой), если высота антенны над поверхностью земли $h_{\rm a} = 15$ м, а высота полета цели $H_{\rm II} = 200$ м. Радиус Земли принять равным $R_{\rm 3} = 6370$ км.
- 10. Найти дальность прямой видимости РЛС для случая положительной рефракции при $dn/dH = -3 \cdot 10^{-8} \text{ м}^{-1}$ и случая отсутствия рефракции (оба значения в км с точностью до одного знака после запятой), если высота антенны над поверхностью земли $h_a = 20 \text{ м}$, а высота полета цели $H_u = 500 \text{ м}$. Радиус Земли принять равным $R_3 = 6370 \text{ км}$.
- 11. Спутник системы GPS выведен на геостационарную орбиту над экватором на высоте H = 20000 км. На каких широтах возможен прием информации от спутника при нахождении потребителя на поверхности земли? Антенну спутника считать

ненаправленной. Радиус Земли принять равным $R_3 = 6370$ км.

- 12. Найдите градиент коэффициента преломления dn/dH (в m^{-1}), если эквивалентный радиус Земли равен 9010 км. Чему равна дальность прямой видимости при такой атмосфере (в км), если высота полета цели составляет $H_{\rm II}=225$ м, а высота подъема антенны $h_{\rm a}=25$ м?
- 13. Найдите градиент коэффициента преломления dn/dH (в м⁻¹), если эквивалентный радиус Земли равен 7043 км. Чему равна дальность прямой видимости при такой атмосфере (в км), если высота полета цели составляет $H_{\rm II} = 400$ м, а высота подъема антенны $h_{\rm a} = 16$ м?
- 14. Вражеский беспилотный летательный аппарат, летевший на высоте $H_{\rm II}=100~{\rm M}$ над поверхностью земли, был сбит ракетой зенитно-ракетного комплекса (3PK) сразу же после его попадания в зону видимости РЛС 3PK. Найдите высоту подъема антенны 3PK $h_{\rm a}$ (в м), если дальность до цели в отсутствие рефракции в момент ее поражения составила 50 км.
- 15. Определите дальномерную погрешность ΔR (в м), вызываемую положительной рефракцией, когда радиоволна распространяется между РЛС и целью в тропосфере по дуге окружности радиуса $R_{3_{-}9\varphi}=8500$ км и измерена дальность до цели R=500 км, по сравнению со случаем, когда рефракция отсутствует. Высотами подъема антенны и полета цели пренебречь.
- 16. Определите дальномерную погрешность ΔR (в м), вызываемую положительной рефракцией, когда радиоволна распространяется между РЛС и целью в тропосфере по дуге окружности радиуса R_{3_{2} 9ф = 8000 км и измерена дальность до цели R=250 км, по сравнению со случаем, когда рефракция отсутствует. Высотами подъема антенны и полета цели пренебречь.
- 17. Найти дальность действия импульсно-доплеровской БРЛС (в км) с частотой $f_0 = 36$ ГГц в дождевом облаке, если затухание радиоволн составляет 4 дБ/км, диаметр антенны d = 30 см, мощность передатчика P = 500 Вт, ЭПР цели S = 0.5 м², коэффициент шума приемника k_{III_n} = 5, пороговое отношение сигнал-шум $q_{\text{пор}} = 3$, произведение постоянной Больцмана на температуру окружающей среды $kT_0 = 4 \cdot 10^{-21}$ Вт/Гц, разрешающая способность по дальности dR = 75 м. КПД антенного тракта и потерями при обработке пренебречь.
- 18. Во сколько раз уменьшится дальность действия когерентно-импульсной РЛС с мощностью P=1 кВт, КНД G=2000, частотой $f_0=3$ ГГц при увеличении затухания радиоволн в атмосфере с 0,05 до 0,3 дБ/км, если мощность шума $P_{\rm III}=10^{-13}$ Вт, а РЛС должна обнаруживать на максимальной дальности цель с ЭПР S=10 м 2 с вероятностью правильного обнаружения D=0,95 при количестве импульсов в пачке N=64 и вероятности ложной тревоги F не более 10^{-5} ? КПД антенного тракта и потерями при обработке пренебречь.

Тема «Пассивные и активные радиолокационные помехи»

- 1. Определите центральные частоты спектров отражений от земной поверхности, если носитель импульсно-доплеровской БРЛС движется со скоростью $V=1800\,$ км/ч, несущая частота $f_0=36\,\Gamma\Gamma$ ц, угол визирования $\beta=60^\circ$, а максимальная однозначно измеряемая дальность $R_{\rm max}=3\,$ км.
- 2. Определите «слепые» дальности и скорости импульсных РЛС с частотами повторения: 1) 2 к Γ ц, 2) 10 к Γ ц, 3) 50 к Γ ц, если рабочая частота РЛС $f_0 = 10$ Γ Γ ц.

- 3. Определите «слепые» скорости (в м/с) импульсной РЛС с фильтром ЧПК, если в РЛС используется вобуляция частоты повторения импульсов $F_1 = 1$ к Γ ц и $F_2 = 1,2$ к Γ ц, а длина волны РЛС $\lambda = 3$ см.
- 4. Определите рабочую частоту (в ГГц) импульсной РЛС с фильтром ЧПК, если в РЛС используется вобуляция частоты повторения импульсов $F_1 = 1,5$ кГц, $F_2 = 1,6$ кГц и $F_3 = 2$ кГц, а первая «слепая» скорость $V_{cn} = 1080$ км/ч.
- 5. Рассчитайте частоту повторения (в к Γ ц) импульсов РЛС, при которой ширина спектра облака дипольных отражателей с гауссовской формой спектра и коэффициентом межпериодной корреляции $\rho(T)=0.991227$ равна 60 Γ ц.
- 6. Найдите коэффициенты подавления (в дБ по мощности) пассивной помехи с гауссовской формой спектра фильтрами ЧПК первого и второго порядка, если максимальная однозначно измеряемая дальность $R_{\rm max}=150$ км, а ширина спектра помехи $\Delta f_{\rm n}=100$ Γ ц.
- 7. Найдите коэффициенты подавления (в дБ по мощности) пассивной помехи с гауссовской формой спектра фильтрами ЧПК первого и второго порядка, если период следования импульсов $T_{\Pi} = 0.5$ мс, а ширина спектра помехи $\Delta f_{\Pi} = 40$ Гц.
- 8. Найдите коэффициенты подавления (в дБ по мощности) пассивной помехи в виде весовой суммы помех с гауссовской и резонансной формами спектра фильтрами ЧПК первого и второго порядка, если доля гауссовской составляющей $\alpha = 0.95$, а относительная ширина спектра помехи $\Delta f_{\Pi}T = 0.05$.
- 9. Определите минимальный порядок фильтра ЧПК, необходимый для подавления до уровня шума пассивной помехи с гауссовской формой спектра и шириной спектра $\Delta f_{\Pi} = 50~\Gamma$ ц, если отношение шум-помеха (по мощности) $\lambda = -50~\rm дБ$, а период следования импульсов РЛС $T_{\Pi} = 2~\rm Mc$.
- 10. Обеспечит ли подавление пассивной помехи с резонансной формой спектра и относительной шириной спектра $\Delta f_{\Pi}T = 0.01$ до уровня шума фильтр ЧПК 6-го порядка, если отношение шум-помеха (по мощности) $\lambda = -20$ дБ? Обоснуйте свой ответ.
- 11. Во сколько раз и как изменится дальность действия РЛС при АШП из вынесенной точки пространства, если коэффициент корреляции помехи в каналах компенсатора о увеличится с 0,995 до 0,999?
- 12. Во сколько раз при прочих равных условиях отличаются дальности обнаружения цели при постановке АШП, если в первом случае цель и постановщик находятся в основном лепестке ДНА, а во втором случае постановщик помех действует по второму лепестку ДНА с уровнем $k_{6\pi} = -17$ дБ (по мощности)? Расстояния до цели и постановщика помех считать одинаковыми.
- 13. Во сколько раз и как изменится дальность действия РЛС при самоприкрытии цели прицельной активной помехой, если коэффициент корреляции помехи в каналах компенсатора р увеличится с 0,99 до 0,9941, а мощность и КНД генератора помех увеличатся в 1,3 раза?
- 14. Рассчитайте вероятность ложной тревоги F при воздействии на РЛС АШП, спектральная плотность которой превосходит спектральную плотность мощности шума приемника в 1) $q_{\rm II}=2,2)$ $q_{\rm II}=5,3)$ $q_{\rm II}=10$ раз, если изначально параметры РЛС рассчитаны на обнаружение полезного сигнала со случайными начальной фазой и амплитудой на фоне собственных шумов приемника с вероятностью ложной тревоги $F=10^{-5}$. Пороговое напряжение $U_{\rm пор}$ считать фиксированным.
- 15. Рассчитайте вероятность правильного обнаружения D при воздействии на РЛС АШП, спектральная плотность которой превосходит спектральную плотность мощности

шума приемника в 1) $q_{\rm II}=2$, 2) $q_{\rm II}=5$, 3) $q_{\rm II}=10$ раз, если изначально параметры РЛС рассчитаны на обнаружение полезного сигнала со случайными начальной фазой и амплитудой на фоне собственных шумов приемника с вероятностями ложной тревоги $F=10^{-5}$ и правильного обнаружения D=0.95. При расчете полагать, что пороговое напряжение $U_{\rm пор}$ изменяется для стабилизации ложной тревоги.

Радиодальномеры

- 1. Рассчитайте дальность до цели (в км), измеренную ЧРД, если используемый ЛЧМ сигнал обеспечивает разрешающую способность по дальности $\delta R=300$ м, период модулирующего пилообразного напряжения $T_{\rm M}=4$ мс, а измеренная разностная частота $F_{\rm p}=80$ к Γ ц.
- 2. Чему равно минимальное измеряемое при помощи ЧРД расстояние (в метрах), если при периоде модулирующего пилообразного напряжения $T_{\rm M}=10$ мс и разностной частоте $F_{\rm p}=5$ к Γ ц измеренное расстояние составило 6 км?
- 3. Во сколько раз и как изменится относительная погрешность измерения разностной частоты в ЧРД $\delta_F = (f_{pcp} F_p)/F_p$, если период модулирующего пилообразного напряжения $T_{\rm M}$ увеличится в 5 раз при прочих равных условиях, а первоначальное отношение времени задержки отраженного сигнала t_R к $T_{\rm M}$ составляло 0,01?
- 4. Рассчитайте дальность до цели (в метрах), измеренную ЧРД с длиной волны $\lambda=3$ см, если используемый ЛЧМ сигнал имеет девиацию частоты в 200 раз меньше частоты несущей, период модулирующего пилообразного напряжения $T_{\rm M}=5$ мс, а измеренная разностная частота $F_{\rm D}=80$ кГц.
- 5. Найдите измеренную ЧРД дальность (в метрах), если измерителем частоты за период модуляции посчитано 400 импульсов, период модуляции много больше максимального времени задержки сигнала от цели, а ширина полосы пропускания приемника ЧРД равна 40 МГц?
- 6. Найдите скорость изменения частоты модулирующего пилообразного напряжения df/dt (МГц/с), если при разностной частоте $F_{\rm p}=4$ кГц измеренное ЧРД расстояние составило 10 км?
- 7. Какие значения дальности R (в км) будут измерены $\Phi P Д$ с частотой излучения 15 к Γ ц, если значения напряжения на выходах фазовых детекторов квадратурных каналов приемника равны по модулю, но противоположны по знаку?
- 8. Чему равна измеренная ФРД дальность R (в метрах) до неподвижного объекта, если измеренная разность фаз $\psi = 90^{\circ}$, а при движении объекта с радиальной скоростью 90 км/ч доплеровский сдвиг частоты $F_{\pi} = 0.1 \ \Gamma$ ц?
- 9. Фазовый радиодальномер работает на частоте $f_0 = 100 \text{ к}\Gamma$ ц, а неподвижный радиоотражающий объект находится от него на расстоянии $R_0 = 16 \text{ км}$. Какая дальность до объекта (в км) будет измерена таким ФРД?
- 10. Какие значения дальности R (в км) будут измерены $\Phi P Д$ с частотой излучения 10 к Γ ц, если значения напряжения на выходах фазовых детекторов квадратурных каналов приемника равны межу собой?
- 11. Импульсный радиодальномер имеет погрешность измерения дальности $\Delta R = 15$ м. Чему равно измеренное таким РД значение дальности R (в км), если показания его счетчика N = 3000?
 - 12. Чему равна измеренная до цели дальность (в км), если за время задержки

сигнала от цели генератор счетных импульсов импульсного РД, имеющий частоту $F = 20 \,\mathrm{MF}$ ц, выработал 50000 импульсов, а используемый для счета импульсов двоичный счетчик является 15-разрядным?

13. Импульсный дальномер измерил расстояние R=18 км по показаниям счетчика N=600. Определите частоту генератора счетных импульсов (в МГц). Определите минимальную разрядность счетчика импульсного радиодальномера, который позволяет измерять дальность до 75 км и имеет погрешность измерения $\Delta R=10$ м?

Радиопеленгаторы

- 1. Рассчитать скорость вращения антенны радиомаяка Ω (об/мин), если измерено значение азимута $\alpha = 240^{\circ}$, а между приемом опорного сигнала и моментом ориентации луча диаграммы направленности антенны радиомаяка на объект прошло $\Delta t = 5$ секунд.
- 2. Скорость вращения антенны радиомаяка $\Omega = 5$ об/мин. Какое значение азимута α будет измерено, если между приемом опорного сигнала и моментом ориентации луча диаграммы направленности антенны радиомаяка на объект прошло $\Delta t = 11$ секунд.
- 3. Чему равно измеренное амплитудным радиопеленгатором значение азимута α , если скорость вращения его антенны $\Omega = 10$ об/мин, начальное положение антенны югсевер, а закон изменения огибающей напряжения на выходе линейной части приемника $u(t) = \exp\{-\pi^2(t-2)^2/2,8\}$.
- 4. При каком расстоянии между приемниками фазового радиопеленгатора d (в м) при разности хода волн 90° измеренный пеленг $\alpha = 60$ °, если рабочая частота пеленгатора $f_0 = 403 \ \mathrm{MFu}$?
- 5. Антенна РЛС представляет собой квадратную эквидистантную решетку, состоящую из $N_{\text{изл}} = 1600$ излучателей и шириной луча диаграммы направленности $\Delta \varphi = 3,581^{\circ}$. Найдите угловые координаты цели (угол места и азимут в градусах), если разность хода волн, принимаемых парой вертикально расположенных излучателей, составляет 20 % от длины волны, а разность хода волн, принимаемых парой горизонтально расположенных излучателей, равна нулю.
- 6. Антенна РЛС представляет собой прямоугольную эквидистантную решетку из $N_{\text{изл}}=2000\,$ излучателей; ширина луча диаграммы направленности в азимутальной плоскости $\Delta\phi_{\alpha}$ в 5 раз больше ширины луча в угломестной плоскости $\Delta\phi_{\beta}$. При частоте зондирующего сигнала $f_0=3\,$ ГГц коэффициент усиления антенны G=6283. Найдите угловые координаты цели (угол места и азимут в градусах), если разность фаз, принимаемых парой вертикально расположенных излучателей, составляет $\psi_{\beta}=155,89^{\circ}$, а разность фаз, принимаемых парой горизонтально расположенных излучателей, равна $\psi_{\alpha}=45^{\circ}$.
- 7. Определите число излучателей N в эквидистантной квадратной антенной решетке, если при измеренном азимуте $\alpha=30^\circ$ и угле места $\beta=0^\circ$ разность фаз, измеренных между крайними горизонтальными элементами решетки, составляет 5π радиан. Расстояние между соседними излучателями в решетке равно половине длины волны.
- 8. При триангуляции цели пеленгаторами 1 и 2 измерены пеленги $\alpha_1 = 60^\circ$ и $\alpha_2 = 120^\circ$. Найдите расстояние до цели по линии траверза R (в км), если пеленгаторы разнесены на расстояние базы d = 34,64 км.
- 9. Какое расстояние R_2 (в км) будет измерено вторым пеленгатором при триангуляции, если расстояние, измеренное первым пеленгатором, совпадает с расстоянием по линии траверза, база d=40 км, а измеренный вторым пеленгатором угол $\alpha_2=120^\circ$?
- 10. Чему равно расстояние (в км) по линии траверза до цели при разнесении пеленгаторов триангуляционной системы на базу d=50 км, если линии пеленгов

пересекаются под прямым углом, а угол, измеренный вторым пеленгатором, в 3 раза больше чем угол, измеренный первым?

- 11. При триангуляции цели пеленгаторами 1 и 2 измерены пеленги $\phi_1 = 120^\circ$ и $\phi_2 = 150^\circ$. Найдите координаты цели на плоскости, если разница расстояний от пеленгаторов до цели составляет $\Delta R = 36,6$ км. Начало системы координат расположено в точке размещения пеленгатора 1, а ось x соединяет точки размещения пеленгаторов и направлена в сторону пеленгатора 2.
- 12. РЛС имеет эквидистантную антенную решетку с линейным размером L=70 см и работает на частоте 3 ГГц. В направлении нормали к решетке обеспечивается ширина ДНА (по уровню 0,5), равная $[1+0.25(N-1)]^{\circ}$, где N номер по списку в журнале. Какой пеленг (в градусах с точностью до второго знака после запятой) будет измерен такой антенной, если разность фаз между соседними элементами решетки равна 30° ?

Контрольные работы с решение задач сдаются по графику на проверку, при условии выполнения контрольных работ студент допускается к сдаче экзамена.

6. Перечень лабораторных работ и вопросов для контроля

Перечень лабораторных работ и вопросов для контроля

перечень лаоораторных раоот и вопросов для контроля						
№ работы	Название лабораторной работы и вопросы для контроля	Шифр				
1	Расчет системных параметров РЛС. 1. Энергетические и вероятностные критерии оптимизации РЛС. 2. Внешние и внутренние параметры РЛС. 3. Что такое разрешающая способность РЛС? 4. Как обеспечить однозначность по дальности и скорости? 5. Основные параметры, влияющие на энергетическую дальность обнаружения целей.	3697				
2	 Исследование цифровых фильтров систем первичной обработки радиолокационных сигналов. 1. Характеристики сигналов и помех в радиолокации. 2. Алгоритм и структура оптимальной обработки сигналов на фоне помех. 3. Характеристики режекторных фильтров. 4. Какими параметрами определяется эффективность подавления пассивных помех? 5. Оптимизация режекторных фильтров. 	3761				
3	Исследование дальности действия радиолокационных систем в условиях радиоэлектронной борьбы. 1. Как определяется энергетическая дальность действия РЛС в условиях пассивных и активных помех? 2. Факторы определяющие размеры зоны действия РЛС в условиях помех. 3. Методы борьбы с активными помехами.	4277				
4	 .Исследование помехозащищенности спутниковых систем навигации 1. Состав спутниковой радионавигационной системы (СРНС). 2. Сравните параметры систем ГЛОНАСС и GPS. 3. Методы решения навигационной задачи, используемые в СРНС. 4. Какие факторы определяют точность позиционирования? 5. Назовите основные характеристики, используемого в лабораторной работе оборудования. 	4333				

График выполнения лабораторных работ соответствует расписанию и размещен в

лаборатории. Сроки выполнения контрольных работ устанавливаются преподавателем и доводятся до сведения студентов в первые две недели семестра.

6. Вопросы для промежуточной аттестации (экзамена)

- 1. Виды активных помех. Их параметры.
- 2. Структурные схемы построения РЛС.
- 3. Истинно-когерентная РЛС.
- 4. Псевдокогерентная РЛС.
- 5. Корреляционно-фильтровая схема обработки радиолокационной информации
- 6. Плотность распределения вероятностей случайного процесса.
- 7. Отношение правдоподобия, функция правдоподобия.
- 8. Характеристики когерентной пачки импульсов.
- 9. Стабилизация уровня ложной тревоги.
- 10. Оценки максимального правдоподобия. Оценка параметров случайного процесса с логнормальным, гамма и КК законами распределения.
- 11. Вычисление порога обнаружения при обнаружении цели на фоне негауссовских помех.
- 12. Хаотическая импульсная помеха.
- 13. Обнаружители с постоянным уровнем ложной тревоги.
- 14. Обнаружение дальномерного кода в спутниковом приёмнике.
- 15. Точность определения местоположения в позиционных системах.
- 16. Влияние шумовой помехи на точность решения навигационной задачи спутниковым приёмником.
- 17. Структурная схема канала дальности системы РСБН.
- 18. Влияние шумовой помехи на канал дальности системы РСБН.
- 19. Вторичная обработка радиолокационной информации.
- 20. Стробирование отметок.
- 21. Обнаружение траекторий объектов.
- 22. Задача ассоциации отметок и траекторий.
- 23. Влияние шумовых помех на систему вторичной обработки радиолокационной информации.
- 24. Структурная схема двухдиапазонного фильтра Калмана.
- 25. Многопозиционные РЛС. Классификация.
- 26. Виды многопозиционных РЛС.
- 27. Обработка сигналов в многопозиционных РЛС.
- 28. Понятие бистатической дальности и скорости.
- 29. Влияние взаимного положения цели и позиций на точность определения координат цели.

7. Контрольные вопросы для оценки сформированных компетенций

1. Что происходит с энергетической дальностью действия РЛС при уменьшении средней мощности передатчика?

Варианты ответа:

а) уменьшается;

- б) увеличивается;
- в) не меняется;
- 2. Что происходит с разрешающей способностью по дальности при увеличении длительности импульса?
- а) увеличивается
- б) не изменяется;
- в) уменьшается.

- 3. Что такое разрешающая способность по дальности?
- а) способность различить две близко расположенные цели по дальности, расположенные на одном угловом положении;
- б) способность различить две близко расположенные цели по скорости, расположенные на одном угловом положении;
- в) способность различить две близко расположенные цели по азимуту.
- 4. Сколько координат цели измеряет двухкоординатная РЛС?
- а) одну;
- б) две;
- в) три.
- 5. Сколько координат цели измеряет трехкоординатная РЛС?
- а) одну;
- б) две;
- в) три.
- 6. Что такое радиальная скорость цели?
- а) проекция скорости движения на линию визирования;
- б) наземная скорость цели;
- в) скорость цели в вакууме.
- 7. Какой параметр отражённого от цели сигнала измеряется в импульсном методе измерения дальности?
- а) задержка;
- б) дисперсия шума;
- в) корреляционная матрица помехи.
- 8. Какой параметр отражённого от цели сигнала измеряется в частотном методе измерения дальности?
- а) частота;
- б) дисперсия шума;
- в) корреляционная матрица помехи.
- 9. Какой параметр отражённого от цели сигнала измеряется в фазовом методе измерения дальности?
- а) фаза;
- б) дисперсия шума;
- в) корреляционная матрица помехи.
- 10. Какой параметр зондирующего сигнала определяет однозначно измеряемую дальность?
- а) период повторения зондирующих импульсов;
- б) амплитуда отражённого сигнала;
- в) частота отражённого сигнала.
- 11. Какой параметр зондирующего сигнала определяет однозначно измеряемую скорость пели?
- а) период повторения зондирующих импульсов;
- б) амплитуда отражённого сигнала;
- в) длительность пачки импульсов.

- 12. Какой критерий обнаружения используется при обнаружении отражённых сигналов в РЛС?
- а) критерий Неймана-Пирсона;
- б) золотое сечение;
- в) покоординатный спуск.
- 13) Чем определяется разрешающая способность по доплеровской частоте отраженного сигнала?
- а) числом импульсов в пачке;
- б) линейными размерами антенны;
- в) шириной диаграммой направленностью.
- 14) Сколько приёмных позиций входит в однопозиционной РЛС;
- а) одна;
- б) две;
- в) три.
- 15) Сколько приёмных позиций входит в многопозиционной РЛС;
- а) одна;
- б) больше двух.