МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. УТКИНА»

Кафедра автоматизации информационных и технологических процессов

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Б1.В.ДВ.01 «Моделирование электрических схем»

Направление подготовки 15.03.04 «Автоматизация технологических процессов и производств»

Направленность (профиль) подготовки Компьютерное проектирование и автоматизированное производство

> Уровень подготовки Бакалавриат

Квалификация выпускника – бакалавр

Форма обучения – очная

1. Общие положения

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретённых компетенций обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено/не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утверждённой заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

2. Перечень компетенций, достигаемые в процессе освоения образовательной программы

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируе- мой компетенции	Вид, метод, форма оценочного мероприятия
1	Программное обеспечение для моделирования электрических схем	ПК-4	Зачёт
2	Элементы электрических цепей	ПК-5	Зачёт
3	Цепи постоянного и переменного токов ПК-4		Зачёт
4	Резонансные цепи	ПК-5	Зачёт
5	Трёхфазные цепи	ПК-4	Зачёт
6	Переходные процессы в цепях с одним накопителем энергии	ПК-5	Зачёт
7	Переходные процессы в цепях с двумя накопителями энергии	ПК-4	Зачёт
8	Диоды и диодные схемы	ПК-5	Зачёт
9	Транзисторы и транзисторные схемы	ПК-4	Зачёт
10	Операционные усилители	ПК-5	Зачёт
11	Логические схемы	ПК-4	Зачёт
12	Комбинационные схемы средней степени интеграции	ПК-5	Зачёт

№	Контролируемые разделы (темы)	Код контролируе-	Вид, метод, форма
п/п	дисциплины	мой компетенции	оценочного
13	Цифровые автоматы с памятью	ПК-4	Зачёт
14	Промежуточная аттестация	ПК-5	Зачёт

3. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Уровень освоения компетенций, формируемых дисциплиной. Описание критериев и шкалы оценивания:

Шкала ог	ценивания	Критерий
«зачтено»	«ОТЛИЧНО»	уровень усвоения материала, предусмотрен-
(эталонный уровень)	(эталонный уровень)	ного программой: процент верных ответов на вопросы от 85 % до 100 %
«зачтено»	«хорошо»	уровень усвоения материала, предусмотрен-
(продвинутый уро-	(продвинутый уро-	ного программой: процент верных ответов на
вень)	вень)	вопросы от 75 % до 84 %
«зачтено»	«удовлетворительно»	уровень усвоения материала, предусмотрен-
(пороговый уровень)	(пороговый уровень)	ного программой: процент верных ответов на вопросы от 65 % до 74 %
«не зачтено»	«неудовлетворитель-	уровень усвоения материала, предусмотрен-
	но»	ного программой: процент верных ответов на вопросы от 0 % до 64 %

4. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности в процессе освоения образовательной программы

4.1. Промежуточная аттестация. Примерные вопросы к зачёту.

- 1. Возможности современного программного обеспечения. Компоненты программных модулей.
- 2. Приборы для проведения измерений. Принцип моделирования схем.
- 3. Исследование элементов электрических цепей. Процессы в элементах при сложном воздействии.
- 4. Преобразования двухполюсников. Эквивалентные преобразования двухполюсников.
- 5. Амплитудно-фазовые соотношения в простых цепях. Анализ схем на переменном токе.
- 6. Частотные характеристики простейших схем. Резонанс в сложных схемах. Частотные характеристики цепей без потерь.
- 7. Анализ основных соотношений в трёхфазных цепях. Схемы с различным подключением генератора и нагрузки.
- 8. Исследование простейших цепей. Анализ процессов в сложных схемах.
- 9. Разряд конденсатора на катушку индуктивности. Анализ процессов в сложных схемах.
- 10. Полупроводниковые диоды. Стабилитроны.
- 11. Однополупериодные и двухполупериодные выпрямители. Мостовой выпрямитель. Ёмкостной фильтр на выходе выпрямителя.
- 12. Диодные ограничители. Диодные формирователи.
- 13. Диодные схемы. Схемы на основе стабилитронов. Маломощные выпрямители.
- 14. Исследование биполярного транзистора. Задание рабочей точки в транзисторном каскаде.
- 15. Работа транзисторного каскада в режиме малого сигнала.

- 16. Расчёт и исследование параметров рабочей точки в транзисторных каскадах.
- 17. Расчёт транзисторного каскада в области малого сигнала.
- 18. Характеристики операционного усилителя. Неинвертирующие усилители. Инвертирующие усилители.
- 19. Компараторы. Суммирование напряжений в схемах на ОУ.
- 20. Дифференцирующие и интегрирующие схемы. Работа схем ОУ на постоянном токе.
- 21. Схемы компараторов. Работа схем ОУ на переменном токе.
- 22. Интегрирующие и дифференцирующие схемы на ОУ.
- 23. Логические схемы и функции. Синтез и исследование логических схем.
- 24. Исследование дешифраторов. Исследование мультиплексоров.
- 25. Применение дешифраторов. Применение мультиплексоров.
- 26. Триггеры. Счётчики. Комбинированные схемы на их основе.
- 27. Что такое моделирование электрических схем и какова его цель?
- 28. Какие программы или инструменты используются для моделирования электрических схем?
- 29. Какие основные компоненты и элементы электрических схем могут быть включены в моделирование?
- 30. Какие виды анализа можно проводить с использованием моделирования электрических схем?
- 31. Какие типы моделей используются для описания элементов электрических схем, например, резисторов, конденсаторов, индуктивностей?
- 32. Каким образом проводится верификация и валидация моделей электрических схем?
- 33. Какие преимущества даёт моделирование перед прототипированием физических электрических схем?
- 34. Какие ограничения могут возникнуть при моделировании сложных электрических схем?
- 35. Каким образом моделирование помогает оптимизировать производительность электрических схем?

4.1. Примерные задания для тестирования

Что такое моделирование электрических схем?

- а) Изучение и анализ электрических схем
- b) Создание математических моделей электрических схем c) Проектирование электрических схем

d) Все перечисленное

Какая программа наиболее популярна для моделирования электрических схем?

- a) AutoCAD
- b) Electronics Workbench
- c) MATLAB
- d) SolidWorks

Какие компоненты могут быть моделированы в программе Electronics Workbench?

- а) Резисторы
- b) Вентиляторы
- с) Конденсаторы
- d) Роботы

Какие методы моделирования электрических схем существуют?

- а) Аналоговое моделирование
- b) Цифровое моделирование
- с) Смешанное моделирование

d) Все перечисленное

Какие виды анализа можно проводить в программе Electronics Workbench?

- а) Сверхвысокочастотный анализ
- b) Узловой анализ
- с) Параметрический анализ
- d) Космический анализ

Как называется устройство, которое изменяет напряжение в схеме?

- а) Резистор
- b) Транзистор
- с) Трансформатор
- d) Диод

Какой тип элемента используется для ограничения напряжения в схеме?

- а) Резистор
- b) Конденсатор
- с) Диод
- d) Индуктивность

Какие компоненты часто используются в схемах для усиления сигнала?

- а) Конденсаторы
- b) Индуктивности
- с) Транзисторы
- d) Резисторы

Что такое схематический символ?

а) Графическое представление компонента на электрической схеме

- b) Числовое значение компонента
- с) Математическое выражение компонента
- d) Кодовое имя компонента

Какие типы источников энергии можно использовать в моделировании электрических схем?

- а) Источник постоянного тока (DC)
- b) Источник переменного тока (AC)
- с) Смешанный источник энергии
- d) Квантовый источник энергии

Какие параметры компонентов можно изменять в процессе моделирования электрической схемы?

- а) Сопротивление
- **b)** Ёмкость
- с) Индуктивность
- d) Масса компонента

Каким образом можно проверить работоспособность электрической схемы в программе моделирования?

- а) Запустить симуляцию
- b) Проверить напряжение на схеме
- с) Измерить силу тока в цепи
- d) Провести анализ стабильности

Какой файловый формат используется для сохранения моделированных электрических схем в программе Electronics Workbench?

- a) .txt
- b) .ewb
- c) .pdf
- d) .exe

Какие программы позволяют моделировать электрические схемы на уровне системы?

- a) AutoCAD
- b) Electronics Workbench
- c) Arduino IDE
- d) T-flex

Какие типы моделирования электрических схем существуют на уровне системы?

- а) Аналоговое моделирование
- **b)** Цифровое моделирование
- с) Смешанное моделирование
- d) Геометрическое моделирование

5. Контролируемые компетенции

Код контролируемой компетенции ПК-4

ПК-4: Выполнение технического задания на разработку автоматизированной системы управления технологическими процессами

- 1) Какие основные цели и задачи предполагаются в техническом задании на разработку автоматизированной системы управления технологическими процессами в области электротехники и электроники?
- 2) Какие требования к электрическим схемам и электронным компонентам предполагается включить в техническое задание?
- 3) Какие виды технологических процессов автоматизированы в сфере машиностроения?
- 4) Какие стандарты и нормативы необходимо учитывать при разработке системы управления технологическими процессами?
- 5) Какие дополнительные системы или оборудование могут потребоваться для интеграции с автоматизированной системой?
- 6) Какие требования к безопасности и надёжности следует учесть при проектировании системы?
- 7) Какие методы и инструменты моделирования электрических схем вы планируете использовать в процессе разработки?
- 8) Какие измерительные приборы и сенсоры будут взаимодействовать с системой управления, и какие данные они будут предоставлять?
- 9) Какие алгоритмы и программное обеспечение будут использоваться для управления технологическими процессами?
- 10) Какой тип интерфейса (графический, текстовый и т. д.) будет предоставлен пользователям для управления системой?
- 11) Какие возможности мониторинга и отчётности предполагаются в системе для отслеживания производительности и состояния процессов?
- 12) Какие требования к энергопотреблению и эффективности системы следует учесть?
- 13) Какие методы резервного копирования данных и восстановления системы будут реализованы?
- 14) Какие предполагаются этапы тестирования и валидации системы перед внедрением?

- 15) Какие ожидаемые сроки и бюджеты проекта на разработку автоматизированной системы управления технологическими процессами?
- 16) Какие критерии и параметры будут использоваться для выбора оптимальных технических решений на различных стадиях проекта системы управления технологическими процессами в области электротехники и электроники?
- 17) Какие альтернативные технические решения рассматриваются для каждого раздела проекта, и какие их преимущества и недостатки?
- 18) Какие методы и инструменты моделирования электрических схем используются для анализа и сравнения различных технических решений?
- 19) Какие технические решения рассматриваются для обеспечения высокой надежности системы управления технологическими процессами?
- 20) Какие факторы влияют на выбор оптимальных компонентов и электронных устройств для системы?
- 21) Какие стандарты и нормативы необходимо соблюдать при выборе технических решений?
- 22) Какие технические решения позволяют оптимизировать энергопотребление системы?
- 23) Какие критерии важны при выборе программного обеспечения для управления технологическими процессами?
- 24) Какие методы анализа и оценки затрат используются для определения бюджета проекта на разработку системы?
- 25) Какие аспекты безопасности следует учитывать при выборе технических решений?
- 26) Какие альтернативные решения рассматриваются для вопросов сетевой связи и передачи данных в системе?
- 27) Какие критерии важны при выборе методов резервного копирования и восстановления данных?
- 28) Какие методы и технические решения используются для обеспечения совместимости системы с другими оборудованием и системами?
- 29) Какие технические решения предполагается использовать для масштабирования системы в будущем?
- 30) Какие методы анализа производительности будут применяться при выборе оптимальных решений?
- 31) Какие факторы важны при выборе оборудования для сбора данных и сенсоров?
- 32) Какие технические решения могут помочь улучшить интерфейс пользователя системы?
- 33) Какие критерии важны при выборе методов тестирования и валидации выбранных технических решений?
- 34) Какие факторы влияют на выбор оптимальных решений для обеспечения совместимости с экологическими и энергетическими стандартами?
- 35) Какие методы и инструменты анализа рисков используются при выборе оптимальных технических решений на различных стадиях проекта?

Какие основные цели технического задания на разработку автоматизированной системы управления технологическими процессами?

- а) Упростить управление системой
- b) Увеличить эффективность производства
- с) Определение цветовой схемы и дизайна пользовательского интерфейса
- d) Определение бюджета и расходов на разработку

Верный ответ: а) и b)

Какие профили специалистов следует учитывать при выполнении технического задания в области электротехники и электроники?

- а) Специалисты по программированию
- b) Электромонтажники
- с) Проектировщики электрических схем

Верный ответ: а) и с)

Какие стандарты и нормативы могут потребоваться при разработке системы управления технологическими процессами?

- a) ISO 9001
- b) ΓΟCT 12.2.007
- c) IEEE 802.11

Верный ответ: b) ГОСТ 12.2.007

Какие аспекты безопасности следует учитывать при разработке системы управления технологическими процессами?

- а) Защита от несанкционированного доступа
- b) Создание резервных копий данных и их хранение
- с) Использование открытых исходных кодов

Верный ответ: а) Защита от несанкционированного доступа

Какие методы моделирования электрических схем могут быть использованы при разработке системы?

- а) Симуляция на основе Electronics Workbench
- b) Физическое моделирование с использованием физических компонентов и проводов
- с) Графический дизайн в Adobe Photoshop

Верный ответ: a) Симуляция на основе Electronics Workbench

Какие критерии важны при выборе программного обеспечения для системы управления?

- а) Наличие бесплатной версии
- b) Совместимость с аппаратными средствами
- с) Размер файла установки

Верный ответ: b) Совместимость с аппаратными средствами

Какие методы анализа производительности могут применяться при выборе оптимальных решений?

- а) Использование счётчиков производительности
- b) Экспертные оценки
- с) Интуитивное ощущение

Верный ответ: а) Использование счётчиков производительности

Какие факторы влияют на выбор оптимальных компонентов и электронных устройств для системы?

- а) Удобство использования
- b) Технические характеристики
- с) Ремонтопригодность

Верный ответ: b) Технические характеристики

Какие методы и инструменты анализа рисков используются при выборе оптимальных технических решений?

- а) SWOT-анализ
- b) Метол Монте-Карло
- с) Второй закон Кирхгофа

Верный ответ: а) и b)

Какие методы тестирования и валидации предполагаются для определения соответствия выбранных технических решений требованиям?

- а) Прохождение технического экзамена в стиле викторины
- b) Тестирование на роботах
- с) Верификация и валидация моделей

Верный ответ: с) Верификация и валидация моделей

Какие технические решения могут помочь улучшить интерфейс пользователя системы?

- а) Использование шрифта Comic Sans
- b) Разработка интуитивно понятного интерфейса
- с) Добавление случайных звуковых эффектов

Верный ответ: b) Разработка интуитивно понятного интерфейса

Какие методы анализа и оценки затрат используются для определения бюджета проекта на разработку системы?

- а) Оценка по времени
- b) Анализ стоимости источников
- с) Опрос сотрудников

Верный ответ: b) Анализ стоимости источников

Какие методы и технические решения используются для обеспечения совместимости системы с другими оборудованием и системами?

- а) Использование USB-портов
- b) Протоколы связи и интерфейсы
- с) Аппаратные средства от одного производителя

Верный ответ: а) и b)

Какие методы резервного копирования данных и восстановления системы могут быть реализованы?

- а) Резервное копирование на бумажных носителях
- b) Регулярное автоматическое резервное копирование
- с) Частичное резервное копирование

Верный ответ: b) Регулярное автоматическое резервное копирование

Какие технические решения предполагается использовать для масштабирования системы в будущем?

- а) Добавление ещё одной кнопки
- b) Использование распределённых систем
- с) Использование искусственного интеллекта

Верный ответ: b) Использование распределённых систем

Код контролируемой компетенции ПК-5

ПК-5: Исследование автоматизированного объекта и подготовка технико-экономического обоснования создания автоматизированной системы управления технологическими процессами

- 1) Какие основные цели и задачи стоят перед исследованием автоматизированного объекта?
- 2) Каким образом определяется состав технологических процессов для автоматизации?
- 3) Какие методы моделирования электрических схем используются при подготовке технико-экономического обоснования?
- 4) Какие преимущества обеспечивает автоматизированная система управления технологическими процессами?
- 5) Каковы ключевые этапы проведения исследования автоматизированного объекта?

- 6) Какие критерии выбора автоматизированной системы управления следует учитывать?
- 7) Какие аппаратные компоненты используются в моделировании электрических схем?
- 8) Каким образом определяется стоимость создания автоматизированной системы управления?
- 9) Какие методы анализа эффективности автоматизации могут быть применены?
- 10) Какие технические характеристики электротехнического оборудования важны при выборе компонентов системы управления?
- 11) Какова роль математического моделирования в оценке эффективности автоматизированной системы управления?
- 12) Какие факторы влияют на надёжность автоматизированной системы управления?
- 13) Какие риски могут возникнуть при внедрении автоматизированной системы и как их можно учесть?
- 14) Каким образом происходит подготовка технической документации для создания автоматизированной системы?
- 15) Какие требования предъявляются к персоналу, работающему с автоматизированной системой управления?
- 16) Какие стандарты и нормативы регулируют создание автоматизированных систем управления?
- 17) Какие методы обучения персонала для работы с автоматизированной системой эффективны?
- 18) Каким образом осуществляется мониторинг и обновление автоматизированной системы управления?
- 19) Какие экономические показатели используются при разработке технико-экономического обоснования?
- 20) Какие перспективы развития автоматизации технологических процессов с использованием электроники и моделирования электрических схем можно выделить?
- 21) Какие методы и технологии используются при сборе исходных данных об объекте управления в электротехнике и электронике?
- 22) Какие источники информации можно использовать для получения данных о зарубежных аналогах в данной области?
- 23) Каким образом осуществляется сбор данных о национальных аналогах в электротехнике и электронике?
- 24) Какие характеристики и параметры объекта управления являются наиболее важными при сборе данных?
- 25) Какими инструментами можно провести анализ полученных данных об объекте управления?
- 26) Какие методы обработки данных применяются для выделения основных характеристик объекта управления?
- 27) Какие технические характеристики и параметры зарубежных аналогов чаще всего интересны для сравнения с отечественными?
- 28) Какие методы анализа применяются для сравнительной оценки зарубежных и отечественных аналогов?
- 29) Каким образом оценивается техническая и экономическая эффективность использования зарубежных аналогов?
- 30) Какие факторы могут влиять на выбор между зарубежными и отечественными аналогами?
- 31) Какие критерии применяются для оценки достоверности исходных данных об объекте управления?
- 32) Каким образом проводится анализ рынка зарубежных аналогов в электротехнике и электронике?
- 33) Какие методы применяются для выявления инноваций и передовых технологий в зарубежных аналогах?

- 34) Какими способами можно обеспечить актуальность исходных данных при долгосрочном проекте в области моделирования электрических схем?
- 35) Какие аналитические инструменты эффективны для выявления тенденций и перспектив в области электротехники и электроники?

Какая основная цель исследования автоматизированного объекта?

- а) Определение структуры управления
- b) Анализ маркетинговых трендов
- с) Улучшение экологической устойчивости
- d) Исследование архитектуры компьютерных сетей

Ответ: а)

Что включает в себя подготовка технико-экономического обоснования?

- а) Проведение маркетинговых исследований
- b) Оценку стоимости и эффективности проекта
- с) Оценка социальных и экологических последствий
- d) Разработку графических дизайнов

Ответ: b)

Какие факторы следует учитывать при выборе автоматизированной системы управления?

- а) Цветовую гамму и дизайн
- b) Название производителя
- с) Технические требования
- d) Возможность интеграции с личными смартфонами сотрудников

Ответ: с)

Какие методы моделирования электрических схем чаще всего используются?

- а) С помощью цветных графов
- b) Метод Монте-Карло
- с) Метод конечных элементов
- d) Эмпирическое моделирование

Ответ: b)

Какие преимущества обеспечивает автоматизированная система управления технологическими процессами?

- а) Сократить расходы на электроэнергию
- b) Уменьшает риск человеческих ошибок
- с) Повышение эффективности и производительности
- d) Улучшение рабочих условий для сотрудников

Ответ: с)

Какие этапы проведения исследования автоматизированного объекта могут выделены?

- а) Эксплуатация системы
- b) Тестирование системы
- с) Анализ существующих систем
- d) Разработка программного обеспечения

Ответ: с)

Какие методы анализа эффективности автоматизации могут быть применены?

- а) Анализ финансовых затрат
- b) Метод анализа данных о производительности
- с) Технический анализ

d) Опрос сотрудников

Ответ: b)

Какие стандарты и нормативы регулируют создание автоматизированных систем управления?

- а) Правила устройства электроустановок
- b) Российский стандарт ГОСТ P 51318.11-2006
- с) Международный стандарт ISO 9001
- d) Национальный стандарт ГОСТ Р 56192

Ответ: с)

Какие экономические показатели используются при разработке технико-экономического обоснования?

- а) Экологические показатели
- b) Оценка социального воздействия
- с) Удовлетворённость сотрудников
- d) Инвестиции и расходы проекта

Ответ: d)

Какие перспективы развития автоматизации технологических процессов выделены для электротехники и электроники?

- а) Внедрение биотехнологий в производство
- b) Развитие нанотехнологий
- с) Использование альтернативных источников энергии
- d) Вытеснение человеческого труда автоматизированными системами

Ответ: b)

Какие аппаратные компоненты чаще всего используются в моделировании электрических схем?

- а) Резистор
- b) Конденсатор
- с) Транзистор
- d) Видеокарта

Ответ: а)

Какие методы обучения персонала для работы с автоматизированной системой эффективны?

- а) Чтение документации
- b) Просмотр обучающих видео
- с) Тренинги и симуляторы
- d) Ролевые игры

Ответ: с)

Каким образом осуществляется мониторинг и обновление автоматизированной системы управления?

- а) Обновление системы только при возникновении ошибок
- b) Регулярными проверками и обновлениями программного обеспечения
- с) Мониторинг состояния системы с помощью специализированного ПО
- d) Обновление системы только при возникновении ошибок

Ответ: b)

Какие факторы могут влиять на надёжность автоматизированной системы управления?

а) Квалификация и опыт персонала

- b) Сложность системы и количество компонентов
- с) Качество компонентов и профессиональное обслуживание
- d) Внешние факторы, такие как изменение погодных условий Ответ: c)

КАФЕДРЫ

Какие этапы проведения исследования автоматизированного объекта могут выделены?

- а) Сбор и анализ данных об объекте
- b) Разработка и тестирование методов и алгоритмов анализа данных
- с) Анализ существующих систем
- d) Оценка эффективности предложенных решений и корректировка при необходимости Ответ: c)

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО
ЗАВЕДУЮЩИМ
КАФЕДРЫ

ПОДПИСАНО
ЗАВЕДУЮЩИМ
ВЫПУСКАЮЩЕЙ