МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА МИКРО- И НАНОЭЛЕКТРОНИКИ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.01 «Микро- и наносенсоры»

Направление подготовки 11.04.04 «Электроника и наноэлектроника»

ОПОП академической магистратуры «Микро- и наноэлектроника»

Квалификация (степень) выпускника – магистр Форма обучения – очная, очно-заочная **Оценочные материалы** — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

- УК-1 совершенствует процессы измерений параметров и модификации свойств наноматериалов и наноструктур;
- ПК-1.1 модернизирует существующие и внедряет новые методы и оборудование для измерений параметров наноматериалов и наноструктур;
- ПК-1.2 модернизирует существующие и внедряет новые процессы и оборудование для модификации свойств наноматериалов и наноструктур;
 - ПК-3.1 разработка архитектуры изделий "система в корпусе";
- Π K-3.2 расчет, моделирование и трассировка отдельных частей изделий "система в корпусе";
 - ПК-4.1 разработка функциональной схемы изделий "система в корпусе";
- ПК-4.2 выбирает материалы и электронные компоненты для конструкции изделий "система в корпусе";
 - ПК-4.3 разрабатывает топологию отдельных блоков изделий "система в корпусе".

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой. Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением теоретического зачета. Форма проведения зачета — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый должен составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки, схемы и т.п.

Паспорт фонда оценочных средств по дисциплине (модулю)

№	Контролируемые разделы (темы)	Код контролируемой	Вид, метод, форма	
П	дисциплины	компетенции	оценочного	
/		(или её части)	мероприятия	
П				
1	2	3	4	
1	Введение	УК-1; ПК-1.1; ПК-1.2;	зачет	

		ПК-3.1; ПК-3.2; ПК- 4.1; ПК-4.2; ПК-4.3	
2	Метрологические характеристики датчиков	УК-1; ПК-1.1; ПК-1.2; ПК-3.1; ПК-3.2; ПК- 4.1; ПК-4.2; ПК-4.3	курсовая работа, лабораторные работы, зачет
3	Наносенсоры на квантовых точках	УК-1; ПК-1.1; ПК-1.2; ПК-3.1; ПК-3.2; ПК- 4.1; ПК-4.2; ПК-4.3	курсовая работа, лабораторные работы, зачет
4	Нанопровода и углеродные нанотрубки	УК-1; ПК-1.1; ПК-1.2; ПК-3.1; ПК-3.2; ПК- 4.1; ПК-4.2; ПК-4.3	курсовая работа, лабораторные работы, практические занятия, зачет
5	Ультратонкие пленки, квантовые ямы	УК-1; ПК-1.1; ПК-1.2; ПК-3.1; ПК-3.2; ПК- 4.1; ПК-4.2; ПК-4.3	курсовая работа, лабораторные работы, зачет
6	Сенсоры на основе микроэлектромеханических (МЭМС) и нано-электромеханических (НЭМС) систем	УК-1; ПК-1.1; ПК-1.2; ПК-3.1; ПК-3.2; ПК- 4.1; ПК-4.2; ПК-4.3	курсовая работа, лабораторные работы, практические занятия, зачет
7	Нанобиосенсоры	УК-1; ПК-1.1; ПК-1.2; ПК-3.1; ПК-3.2; ПК- 4.1; ПК-4.2; ПК-4.3	курсовая работа, практические занятия, зачет
8	Новые технологии в производстве современных микро- и наносенсоров (датчиков)	УК-1; ПК-1.1; ПК-1.2; ПК-3.1; ПК-3.2; ПК- 4.1; ПК-4.2; ПК-4.3	курсовая работа, практические занятия, зачет

Формы текущего контроля

Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, на лабораторных и практических занятиях, а также экспресс — опросов и заданий по лекционным материалам, лабораторным работам и практическим занятиям. Учебные пособия, рекомендуемые для самостоятельной работы обучающихся по дисциплине, содержат необходимый теоретический материал, тестовые задания и вопросы по каждому из разделов дисциплины. Результаты ответов на вопросы тестовых заданий контролируются преподавателем.

Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является теоретический зачет. К зачету допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения зачета – устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Критерии оценки компетенций обучающихся и шкалы оценивания

Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий, а также самостоятельной работы оценивается

по критериям шкалы оценок: «зачтено» – «не зачтено». Освоение материала дисциплины и контролируемых компетенций обучающегося служит основанием для допуска обучающегося к этапу промежуточной аттестации – теоретическому зачету.

Целью проведения промежуточной аттестации (зачета) является проверка общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Наносенсоры».

Уровень теоретической подготовки определяется составом приобретенных компетенций, усвоенных им теоретических знаний и методов, а также умением осознанно, эффективно использовать их при решении задач целенаправленного применения различных видов твердотельных микро- и наноструктур для создания современных твердотельных микро- и наносенсоров.

Теоретический зачет организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, являются экзаменационный билет, содержание которого определяется ОПОП и Рабочей программой. Экзаменационный билет включает в себя, как правило, два вопроса, один из которых относятся к указанным выше теоретическим разделам дисциплины и один – практическому применению твердотельных микро- и наноструктур для создания современных твердотельных микро- и наносенсоров.

Оценке на заключительной стадии теоретического зачета подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора по критериям шкалы оценок: «зачтено» – «не зачтено».

Применяются следующие критерии оценивания компетенций (результатов):

- уровень усвоения материала, предусмотренного программой;
- умение анализировать материал, устанавливать причинно-следственные связи;
- полнота, аргументированность, убежденность ответов на вопросы;
- качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

Оценка «Зачтено» выставляется обучающемуся, который показывает полные или достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов); правильно, аргументировано отвечает на все вопросы, с приведением примеров; владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данной дисциплины, других изучаемых предметов; делает несущественные ошибки в ответах на дополнительные вопросы.

Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и лабораторной работы, систематическая активная работа на практических занятиях и выполнения графика подготовки курсовой работы.

Оценка «**Не зачтено**» выставляется обучающемуся, который демонстрирует отсутствие знаний значительной части программного материала дисциплины (не справился с 50% вопросов и заданий при ответе на вопросы билета), в ответах на дополнительные вопросы допускает существенные и грубые ошибки. Целостного представления о взаимосвязях элементов дисциплины «Наносенсоры» и использования предметной терминологии у обучающегося нет.

Курсовая работа представляется для защиты в форме доклада с мультимедийной презентацией и оценивается по четырехбальной шкале оценок: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно», что соответствует шкале «компетенции студента полностью соответствуют требованиям ФГОС ВО», «компетенции студента в основном соответствуют требованиям ФГОС ВО», «компетенции студента не соответствуют требованиям ФГОС ВО».

К оценке качества выполнения курсовой работы рекомендуется предъявлять следующие общие требования.

«Отлично»:

Задание на курсовую работу выполнено полностью. Содержание пояснительной записки соответствует заданной теме, а сама пояснительная записка выполнена в полном соответствии с требованиями ГОСТ 7.32-2001(ИСО 5966-82) «Отчет о научно-исследовательской работе. Структура и правила оформления»; ГОСТ 2.105-95 «Единая система конструкторской документации. Общие требования к текстовым документам». Подготовлена презентация в среде MS Office (Open Office), раскрывающая методы и результаты выполнения задания. При защите курсовой работы магистрант демонстрирует глубокие и твердые знания в предметной области, формулирует полные, четкие, логически последовательные, правильные ответы на поставленные вопросы и демонстрирует умение выделять главное и делать выводы.

«Хорошо»:

Задание на курсовую работу выполнено полностью. Содержание пояснительной записки в основном соответствует заданной теме, а сама пояснительная записка выполнена в соответствии с требованиями ГОСТ 7.32-2001(ИСО 5966-82) «Отчет о научно-исследовательской работе. Структура и правила оформления»; ГОСТ 2.105-95 «Единая система конструкторской документации. Общие требования к текстовым документам» с некоторыми замечаниями. Подготовлена презентация в среде MS Office (Open Office), в основном раскрывающая методы и результаты выполнения задания. При защите курсовой работы магистрант демонстрирует твердые знания в предметной области, формулирует последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы и демонстрирует умение делать аргументированные выводы.

«Удовлетворительно»:

Задание на курсовую работу выполнено полностью. Содержание пояснительной записки в основном соответствует заданной теме, а сама пояснительная записка выполнена в соответствии с требованиями ГОСТ 7.32-2001(ИСО 5966-82) «Отчет о научно-исследовательской работе. Структура и правила оформления»; ГОСТ 2.105-95 «Единая система конструкторской документации. Общие требования к текстовым документам» с существенными замечаниями. Подготовлена презентация в среде МЅ Office (Open Office), в основном раскрывающая методы и результаты выполнения задания. При защите курсовой работы магистрант демонстрирует удовлетворительные знания в предметной области, понимание сущности обсуждаемых вопросов, формулирует правильные, без грубых ошибок ответы на поставленные вопросы, допускает несущественные ошибки в ответах на дополнительные вопросы и демонстрирует умение делать адекватные выводы.

«Неудовлетворительно»:

Задание на курсовую работу не выполнено или выполнено частично. Содержание пояснительной записки не соответствует заданной теме, а пояснительная записка выполнена с грубыми нарушениями ГОСТ 7.32-2001(ИСО 5966-82) «Отчет о научно-исследовательской работе. Структура и правила оформления» и ГОСТ 2.105-95 «Единая система конструкторской документации. Общие требования к текстовым документам». Магистрант демонстрирует отсутствие знаний значительной части программного материала дисциплины, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений, допускает грубые, принципиальные ошибки в ответах на вопросы.

В случае неудовлетворительной оценки магистранту выдается новая тема курсовой работы. Все перечисленные выше требования и критерии оценки при этом сохраняются. Считается, что магистрант не выполнил график учебного процесса, и к сдаче теоретического зачета он не допускается.

Типовые контрольные темы, темы курсовой работы и вопросы по дисциплине «Наносенсоры»

Вопросы к лабораторным занятиям по дисциплине

	Лабораторная работа № 1 «Измерение метрологических характеристик датчиков»					
1	Пределы применяемости датчиков					
2	Градуировка датчиков. Передаточная характеристика датчика. Линейность					
3	Чувствительность датчиков в статическом и динамическом режимах					
4	Разрешающая способность.					
5	Быстродействие датчиков. Системы 0-го, 1-го и 2-го порядков					
6	Частотная характеристика датчиков систем нулевого, первого и второго порядков					
7	Погрешности измерений с помощью датчиков					
	Лабораторная работа № 2 «Терморезистивный анемометр»					
1						
2	Сравнительная характеристика методов и датчиков скорости, расхода газов и					
	биожидкостей					
3						
	постоянным током и постоянной температурой					
4	Чашечные и крыльчатые анемометры, анемометры с тормозящей механической					
	пластиной, трубка Пито					
5	Ультразвуковые и лазерные анемометры и расходомеры					
6	Доплеровские анемометры					
7	Ионные и параметрические анемометры					
	Лабораторная работа № 3 «Пироэлектрический датчик температуры»					
1	Принципы и методы измерения температуры бесконтактным методом					
2	Пироэлектрический эффект: физическая сущность, пироэлектрические материалы					
3	Метрологические характеристики оптических датчиков температуры					
4	Функциональная схема оптического пирометра					
5	Болометры. Принципы работы, конструкции					
	Лабораторная работа № 4 «Акустический датчик»					
1	Акустические термины и единицы					
2	Виды акустических датчиков					
3	Конденсаторные микрофоны					
4	Электретные микрофоны					
5	Электродинамические микрофоны					
	Лабораторная работа № 5 «Тензодатчик»					
1	Основные типы тензорезисторов и их краткая характеристика					
2	Природа тензоэффекта в металлах					
	Природа тензоэффекта в полупроводниках					
3						
3	Природа тензоэффекта в полупроводниках Основные метрологические характеристики тензопреобразователей					
3						

Примерные темы практических занятий

	TIPH MEPHER TO MEET TO CALL THE COLUMN SWIFT THE				
No	Наименование темы				
1	Основные метрологические характеристики датчиков				
2	Нанопровода и углеродные нанотрубки				
3	Сенсоры на основе микроэлектромеханических (МЭМС) и наноэлектромеханических				
	(НЭМС) систем				
4	Обработка информации в биодатчиках. Основные свойства биосенсоров				
5	Новые технологии в производстве современных микро- и наносенсоров (датчиков)				

Типовые темы курсовой работы

».c	типовые темы курсовои расоты					
No	Наименование темы					
1	Конструктивная и схемотехническая реализация терморезистивного					
	микро(нано)сенсора					
2	Конструктивная и схемотехническая реализация термоэлектрического					
	микро(нано)сенсора					
3	Конструктивная и схемотехническая реализация пьезоэлектрического					
	термомикро(нано)сенсора					
4	Конструктивная и схемотехническая реализация пироэлектрического					
	термомикро(нано)сенсора					
5	Конструктивная и схемотехническая реализация полупроводникового					
	термомикро(нано)сенсора					
6	Конструктивная и схемотехническая реализация емкостного микро(нано)сенсора					
	давления					
7	Конструктивная и схемотехническая реализация пьезоэлектрического					
	микро(нано)сенсора давления					
8	Конструктивная и схемотехническая реализация пьезорезистивного					
	(тензо)микро(нано)сенсора давления					
9	Конструктивная и схемотехническая реализация емкостного					
	микро(нано)акселерометра					
10	Конструктивная и схемотехническая реализация пьезорезистивных					
	микро(нано)акселерометра					
11	Конструктивная и схемотехническая реализация термомикро(нано)акселерометра					
12	Конструктивная и схемотехническая реализация акустических микро(нано)сенсоров					
13	Конструктивная и схемотехническая реализация микрорасходомера					
14	Конструктивная и схемотехническая реализация газового микро(нано)сенсора					
15	Конструктивная и схемотехническая реализация микро(нано)сенсора для генной					
	диагностики					
16	Конструктивная и схемотехническая реализация комбинированного					
	микро(нано)сенсора («лаборатория на чипе»)					
17	Конструктивная и схемотехническая реализация оптического микро(нано)сенсора					
18	Конструктивная и схемотехническая реализация тактильного микро(нано)сенсора					
19	Конструктивная и схемотехническая реализация инерционных микро(нано)сенсора для					
	систем навигации					
20	Конструктивная и схемотехническая реализация микро(нано)сенсора магнитного поля					
	на эффекте гигантского магнитосопротивления					

Вопросы к теоретическому зачету

	Donpoeth Recomy 3a 1eTy					
	Тема 1 «Введение					
1.1	Нанотехнологии в технике датчиков измерительных систем. Последние достижения и разработки					
1.2	Современное состояние рынка микро- и наносенсоров (датчиков), тенденции и перспективы его развития					
1.3	Требования, предъявляемые к современным микро- и наносенсорам (датчикам)					
1.4	Основные физические принципы и законы, лежащие в основе работы микро и наносенсоров					
1.5	Особенности применения микро- и наносенсоров в технике и биомедицине. Вопросы безопасности и жизненного цикла					
Тема 2 «Метрологические характеристики датчиков»						

2.1	Определение датчика – первичного измерительного преобразователя (ПИП). Основные				
	элементы датчиков. Технические и биологические системы				
2.2	Пределы применяемости датчиков. Градуировка датчиков				
2.3	Характеристики датчиков в статическом режиме. Чувствительность датчиков в				
	статическом режиме. Разрешающая способность. «Мертвая» зона. Линейность				
2.4	Характеристики датчиков в динамическом режиме. Передаточная, переходная				
	функции. Системы 0-го, 1-го и 2-го порядков. Примеры датчиков систем 0-го, 1-го и 2-				
	го порядков				
2.5	Характеристики датчиков в динамическом режиме. Частотная характеристика				
2.6	датчиков систем нулевого, первого и второго порядков				
2.6	Быстродействие: время установления для систем нулевого, первого и второго порядков				
2.7	Погрешности измерений с помощью датчиков				
0.1	Тема 3 «Наносенсоры на квантовых точках»				
3.1	Квантовые точки: определение квантовой точки				
3.2	Методы изготовления квантовых точек				
3.3	Применение квантовых точек, в том числе в качестве биомаркеров и биосенсоров				
	Тема 4 «Нанопровода и углеродные нанотрубки»				
4.1	Физические свойства и особенности нанопроводов и углеродных нанотрубок				
4.2	Синтез углеродных нанотрубок				
4.3	Изготовление отдельных нанопроводов и их массивов				
4.4	Принципы работы сенсоров на основе индивидуальных и случайного массива				
	углеродных нанотрубок				
- 1	Тема 5 «Ультратонкие пленки, квантовые ямы»				
5.1	Физические свойства и особенности технологии получения ультратонких пленок				
5.2	Применение мембранных наноструктур оксидов металлов и полимерных наноструктур				
<i>F</i> 2	в газовых сенсорах				
5.3	Хемочувствительные полупроводниковые структуры Тема 6 «Сенсоры на основе микроэлектромеханических (МЭМС) и нано-				
эпак	тема о «Сенсоры на основе микроэлектромеханических (мэмс) и нано- тромеханических (НЭМС) систем»				
6.1	МЭМС и НЭМС				
6.2	Нановесы				
6.3	Лаборатория "на чипе"				
0.5	Тема 7 «Нанобиосенсоры»				
7.1	Обработка информации в биодатчиках				
7.2	Основные свойства биосенсоров				
7.3	Тканевые, клеточные, ферментативные и другие виды биосенсоров				
7.4	Микро и нанобиодатчики				
7.4	Тема 8 «Новые технологии в производстве современных микро- и наносенсоров				
(латч	чиков)»				
8.1	Новые технологии в производстве современных микро- и наносенсоров				
8.2	Технология «кремний на сапфире» (КНС)				
8.3	Технология МОП структур с иммобилизованными тканевыми, ферментативными и				
٠.٥	клеточными затворами (биосенсоры)				
8.4	Методы иммобилизации				
8.5	Поверхностная и объемная микрообработка				
8.6	Технология микромеханических (МЭМС) и наномеханических (НЭМС) структур				
8.7					
8.7 8.8	Комбинирование и интеграция (системы на чипе)				
8.8	Комбинирование и интеграция (системы на чипе) Технология диэлектрических, ионоселективных мембран				
	Комбинирование и интеграция (системы на чипе)				

внедрения, обслуживания и замены)									
Тема 9 «Заключение»									
9.1	«Дорожные	карты»	развития	микро-	наносенсоров.	Рынок,	основные	игроки	И
	тенденции развития								

Составил

к.т.н., доцент кафедры микро- и наноэлектроники

Вишняков Н.В.

Зав. кафедрой микро- и наноэлектроники

д.ф.-м.н., доцент

Литвинов В.Г.