МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования Рязанский государственный радиотехнический университет имени В.Ф. Уткина

Кафедра «Промышленной электроники»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Цифровая электроника»

Направление подготовки
11.03.04 "Электроника и наноэлектроника "

ОПОП академического бакалавриата

«Промышленная электроника»

Квалификация выпускника – бакалавр

Рязань 2024 г.

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено».

Промежуточный контроль по дисциплине осуществляется проведением экзамена. Форма проведения экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса.

Паспорт фонда оценочных средств по дисциплине

№ п/п	Контролируемые темы дисциплины	Код контролируемой компетенции	оценочного
	Раздел I. Комбинационные устройства.		средства
1.	Тема 1.1. Базовые логические элементы.	ПК-2	Экзамен
2.	Тема 1.2. Сумматоры.	ПК-2	Экзамен
3.	Тема 1.3. Устройства отображения информации.	ПК-2	Экзамен, курсовой проект
	Разделл II. Цифровые автоматы.		
4.	Тема 2.1. Триггеры.	ПК-2, ПК-5	Экзамен, курсовой проект

5.	Тема 2.2. Счетчики импульсов.	ПК-2, ПК-5	Экзамен, курсовой проект
6.	Тема 2.3. Регистры.	ПК-2, ПК-5	Экзамен, курсовой проект
7.	Тема 2.4.Запоминающие устройства.	ПК-2, ПК-5, ПК-6	Экзамен, курсовой проект
8.	Тема 2.5. Функциональные узлы цифровой электроники.	ПК-2, ПК-5, ПК-6	Экзамен, курсовой проект

Перечень лабораторных работ

$N_{\underline{0}}$	№ раздела	Наименование лабораторных работ
Π/Π	дисциплины	
1.	Раздел 2. Тема 2.1.	Асинхронные триггеры
2.	Раздел 2. Тема 2.1.	Синхронные триггеры
3.	Раздел 2. Тема 2.2.	Асинхронные счетчики
4.	Раздел 2. Тема 2.2.	Синхронные счетчики
5.	Раздел 2. Тема 2.3.	Регистры
6.	Раздел 2. Тема 2.4.	Полупроводниковые запоминающие устройства

Планы практических занятий

Раздел 2

1. Практическое занятие 1. «Триггеры».

Цель: изучение триггеров.

Вопросы для обсуждения

- 1. Рассмотрите основные функциональные типы триггеров.
- 2. Асинхронный RS-триггер: условное обозначение, принципиальная схема, таблица функционирования и временные диаграммы на входах R и S и выходах Q и \overline{Q} .
- 3. D-триггер, синхронизируемый по уровню: условное обозначение, принципиальная схема, таблица функционирования и временные диаграммы на входах D и C и на выходе Q.
- 4. D-триггер, синхронизируемый по фронту: условное обозначение, принципиальная схема, таблица функционирования и временные диаграммы на входах D и C и на выходе Q.

Задания для самостоятельной работы

1. Приведите интегральные микросхемы RS-триггеров.

- 2. Приведите интегральные микросхемы D-триггеров.
- 3. Приведите интегральные микросхемы ЈК-триггеров.

Рекомендуемая литература: 1, 2, 3, 5, 6, 9,11.

Практическое занятие 2. «Счетчики импульсов»

Цель: изучение счетчиков импульсов.

Вопросы для обсуждения

- 1. Асинхронный суммирующий счетчик на Т-триггерах: условное обозначение, принципиальная схема, временные диаграммы на входе и выходах счетчика.
- 2. Асинхронный вычитающий счетчик на Т-триггерах: условное обозначение, принципиальная схема, временные диаграммы на входе и выходах счетчика.
- 3. Синхронный суммирующий счетчик на Т-триггерах: условное обозначение, принципиальная схема, временные диаграммы на входе и выходах счетчика.

Задания для самостоятельной работы

- 1. Приведите интегральные микросхемы асинхронных счетчиков импульсов.
- 2. Приведите интегральные микросхемы синхронных суммирующих счетчиков импульсов.
- 3. Приведите интегральные микросхемы синхронных реверсивных счетчиков импульсов.

Рекомендуемая литература: 1, 2, 3, 5, 6, 9,11].

Практическое занятие 3. «Регистры».

Цель: изучение регистров.

Вопросы для обсуждения

- 1. Регистр памяти на D-триггерах, синхронизированных по уровню и по фронту 1/0.
- 2. Регистр сдвига вправо на D-триггерах: условное обозначение, принципиальная схема и таблица функционирования.
- 3. Регистр сдвига влево на D-триггерах: условное обозначение, принципиальная схема и таблица функционирования.

Задания для самостоятельной работы

- 1. Приведите интегральные микросхемы регистров памяти.
- 2. Приведите интегральные микросхемы регистров сдвига.
- 3. Приведите интегральные микросхемы универсальных регистров.

Рекомендуемая литература: 1, 2, 3, 5, 6, 9,11.

Практическое занятие 4. «Полупроводниковые запоминающие устройства».

Цель: изучение полупроводниковых запоминающих устройств.

Вопросы для обсуждения

1. Классификация ЗУ и их основные параметры.

- 2. Структура микросхем ОЗУ.
- 3. Условное обозначение и назначение выводов ОЗУ с раздельными и совмещенными выводами ввода-вывода данных.
- 4. Условное обозначение и назначение выводов ОЗУ динамической памяти.

Задания для самостоятельной работы

- 1. Статические ОЗУ: временные диаграммы цикла записи информации.
- 2. Статические ОЗУ: временные диаграммы цикла считывания информации.
- 3. Динамические ОЗУ: временные диаграммы цикла записи информации.
- 4. Динамические ОЗУ: временные диаграммы цикла считывания информации.
 - 5. Динамические ОЗУ: временные диаграммы режима регенерации. Рекомендуемая литература

Рекомендуемая литература: 1, 2, 3, 5, 8, 9,11, 12.

6.7 Тематика курсовой работы

- 1. Устройство измерения длительности импульса (в соответствии с индивидуальным заданием).
- 2. Устройство измерения длительности периода (в соответствии с индивидуальным заданием).
- 3. Устройство измерения интервала времени между двумя событиями (в соответствии с индивидуальным заданием).
- 4. Устройство измерения постоянной времени интегрирующей цепи (в соответствии с индивидуальным заданием).
- 5. Устройство измерения интервала времени спадающего напряжения (в соответствии с индивидуальным заданием).
- 6. Устройство измерения интервала времени нарастающего напряжения (в соответствии с индивидуальным заданием).

Вопросы к экзамену по дисциплине

- 1. Базовые логические элементы.
- 2. Условное обозначение интегральных микросхем.
- 3. Полусумматоры.
- 4. Полный одноразрядный сумматор.
- 5. Параллельный сумматор с последовательным переносом. Параллельный сумматор с параллельным переносом.
- 6. Двоично-десятичный сумматор.
- 7. Накапливающий сумматор.
- 8. Светодиодные индикаторы. Схемы включения светодиодных индикаторов.
- 9. Жидкокристаллические индикаторы. Управление

жидкокристаллическими индикаторами.

- 10. Классификация триггеров.
- 11. Асинхронный RS- триггер.
- 12. Синхронный RS- триггер.
- 13. D-триггер, синхронизируемый по уровню.
- 14. D-триггер, синхронизируемый по фронту.
- 15. Т- и ЈК- триггер.
- 16. Построение типичного порта микроконтроллеров.
- 17. Классификация счетчиков импульсов.
- 18. Асинхронный суммирующий счетчик импульсов.
- 19. Асинхронный вычитающий счетчик импульсов.
- 20. Асинхронный реверсивный счетчик импульсов.
- 21. Асинхронные счетчики импульсов, выполненные в виде интегральных микросхем средней степени интеграции.
- 22. Синхронный суммирующий счетчик импульсов.
- 23. Синхронный вычитающий счетчик импульсов.
- 24. Синхронный реверсивный счетчик импульсов.
- 25. Синхронные счетчики импульсов, выполненные в виде интегральных микросхем средней степени интеграции.
- 26. Построение счетчиков импульсов с заданным модулем счета.
- 27. Классификация регистров.
- 28. Регистры памяти.
- 29. Регистры сдвига влево и вправо.
- 30. Применение регистров сдвига для быстрого умножения и деления двоичных чисел.
- 31. Кольцевые регистры.
- 32. Распределители импульсов на основе кольцевых регистров.
- 33. Универсальные регистры.
- 34. Счетчик Джонсона.
- 35. Схема устранения влияния дребезга контактов.
- 36. Устройство измерения временных интервалов. Погрешность измерения временных интервалов.
- 37. Устройство привязки асинхронного сигнала к синхронной последовательности.
- 38. Устройство измерения интервала времени спадающего и нарастающего напряжения.
- 39. Измерение постоянной времени интегрирующей цепи.
- 40. Классификация запоминающих устройств.
- 41. Статические ОЗУ: условное обозначение, назначение выводов. Статические ОЗУ с раздельными выводами входа и выхода данных.
- 42. Статические ОЗУ с объединенными выводами входа и выхода данных.
- 43. Постоянные запоминающие устройства: масочные, программируемые и репрограммируемые.
- 44. Флэш- память.
- 45. Архитектура флэш-памяти с организацией NOR.
- 46. Архитектура флэш-памяти с организацией NAND.

- 47. Увеличение емкости модуля памяти за счет увеличения разрядности. Наращивание емкости модуля памяти за счет увеличения разрядности адреса.
- 48. Построение модуля памяти для микропроцессорных систем.
- 49. Динамические ОЗУ. Условное обозначение. Структура матрицы запоминающих элементов.
- 50. Временные диаграммы ДОЗУ в режиме записи, считывания и регенерации.

Типовые задания для самостоятельной работы

Чтение и анализ научной литературы по темам и проблемам курса.

Конспектирование, аннотирование научных публикаций.

Рецензирование учебных пособий, монографий, научных статей, авторефератов.

Анализ нормативных документов и научных отчётов.

Реферирование научных источников.

Сравнительный анализ научных публикаций, авторефератов и др.

Проектирование методов исследования и исследовательских методик и др.

Подготовка выступлений для коллективной дискуссии.

Критерии оценивания компетенций (результатов)

- 1. Уровень усвоения материала, предусмотренного программой.
- 2. Умение анализировать материал, устанавливать причинно-следственные связи.
- 3. Ответы на вопросы: полнота, аргументированность, убежденность, умение.
- 4. Качество ответа: его общая композиция, логичность, убежденность, общая эрудиция.
- 5. Использование дополнительной литературы при подготовке ответов.

Ответ оценивается по 4 балльной системе.

Отметка «5» ставится, если:

- знания отличаются глубиной и содержательностью, дается полный исчерпывающий ответ, как на основные вопросы билета, так и на дополнительные;
- обучающийся свободно владеет теоретическими и практическими навыками;
- логично и доказательно раскрывает вопрос, предложенный в билете;
- ответ характеризуется глубиной, полнотой и не содержит фактических ошибок;
 - ответ иллюстрируется расчетными примерами;
- обучающийся демонстрирует умение аргументировано вести диалог и научную дискуссию.

Отметка «4» ставится, если:

- знания имеют достаточный содержательный уровень, однако отличаются слабой структурированностью; содержание билета раскрывается, но имеются неточности при ответе на дополнительные вопросы
- имеющиеся в ответе несущественные фактические ошибки, обучающийся способен исправить самостоятельно, благодаря наводящему вопросу;
 - недостаточно раскрыта проблема по одному из вопросов билета;
 - недостаточно логично изложен вопрос;
 - ответ прозвучал недостаточно уверенно;
- обучающийся не смог продемонстрировать способность к интеграции теоретических знаний к практике.

Отметка «3» ставится, если:

- содержание билета раскрыто слабо, знания имеют фрагментарный характер, отличаются поверхностностью и малой содержательностью, имеются неточности при ответе на основные вопросы билета;
- программные материал в основном излагается, но допущены фактические ошибки;
- обучающийся не может привести пример для иллюстрации теоретического положения;
- у обучающегося отсутствует понимание излагаемого материала, материал слабо структурирован.

Отметка «2» ставится, если:

- обнаружено незнание или непонимание обучающимся теории логико-мыслительных методов математики;
- содержание вопросов билета не раскрыто, допускаются существенные фактические ошибки, которые обучающийся не может исправить самостоятельно;
- на большую часть дополнительных вопросов по содержанию экзамена обучающийся затрудняется дать ответ или не дает верных ответов.

Составил:

к.т.н., доцент каф. ПЭл

А.А.. Свиязов

Зав. кафедрой ПЭл д.т.н., доцент

С.А. Круглов