ПРИЛОЖЕНИЕ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Актуальные проблемы современной электроники»

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой. Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена. Форма проведения экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается три теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый должен составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки, схемы и т.п.

Паспорт фонда оценочных средств по дисциплине (модулю)

No	Контролируемые разделы (темы)	Код контролируемой	Вид, метод, форма
П	дисциплины	компетенции	оценочного
/		(или её части)	мероприятия
П			
1	2	3	4
1	Введение. Предмет дисциплины и ее	ПК-2.1, ПК-2.2	зачет
	задачи.		
2	Основные закономерности генерации	ПК-2.1, ПК-2.2	практические заня-
	тормозного и характеристического		тия, зачет
	рентгеновского излучения.		
3	Конструкции современных	ПК-2.1, ПК-2.2	практические
	рентгеновских трубок.		занятия, зачет
4	Сильноточные и быстродействующие	ПК-2.1, ПК-2.2	практические заня-
	коммутаторы тока.		тия, зачет
5	Мощные лазеры для технологических	ПК-2.1, ПК-2.2	практические заня-
	и военных применений.		тия, зачет
6	Применение лазеров в оптической	ПК-2.1, ПК-2.2	практические заня-
	локации и экологическом мониторин-		тия, лабораторные
	ге окружающей среды.		работы, зачет

7	Генерация мощных электромагнит-	ПК-2.1, ПК-2.2	практические заня-
	ных импульсов (ЭМИ)		тия, зачет
8	Фотоприёмные приборы с зарядовой	ПК-2.1, ПК-2.2	практические заня-
	связью.		тия, зачет

Формы текущего контроля

Текущий контроль по дисциплине «Актуальные проблемы современной электроники» проводится в виде опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, на лабораторных занятиях, а также экспресс – опросов и заданий по лекционным материалам.

Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является экзамен. К экзамену допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения экзамена — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Критерии оценки компетенций, обучающихся и шкалы оценивания

Оценка степени формирования контролируемых компетенций у обучающихся на различных этапах их формирования проводится преподавателем во время консультаций и практических занятий по двухбалльной шкале оценок «зачтено» – «не зачтено». Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, и на практических занятиях, а также экспресс – опросов и заданий по лекционным материалам и практическим занятиям. Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах практических занятий и самостоятельной работы оценивается по критериям двухбалльной шкалы оценок – «зачтено» – «не зачтено». Освоение материала дисциплины и достаточно высокая степень формирования контролируемых компетенций обучающегося (эффективное и своевременное выполнение всех видов учебной работы, предусмотренных учебным планом и настоящей программой) служат основанием для допуска обучающегося к этапу промежуточной аттестации – экзамену.

Целью проведения промежуточной аттестации является проверка общекультурных, общепрофессиональных и профессиональных компетенций, приобретенных магистрантом при изучении дисциплины «Оптико—электронные приборы и устройства».

Уровень теоретической подготовки магистранта определяется составом и степенью формирования приобретенных компетенций, усвоенных им теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач целенаправленного применения полученных знаний на практике.

Зачет организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, является экзаменационный билет, содержание которого определяется ООП и настоящей рабочей программой. Экзаменационный билет включает в себя, как правило, три вопроса, из которых два вопроса, относятся к указанным выше теоретическим разделам дисциплины и один – практическому применению полученных знаний – решению задачи. Оценке на заключительной стадии экзамена подвергаются результаты решения задач, устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора. Применяются следующие критерии оценивания компетенций (результатов):

- -уровень усвоения материала, предусмотренного программой;
- -умение анализировать материал, устанавливать причинно-следственные связи;
- полнота, аргументированность, убежденность ответов на вопросы;
- -качество ответа (общая композиция, логичность, убежденность, общая эрудиция);

-использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

«Зачтено»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы;

достаточно полные и твёрдые знания программного материала дисцип-лины, правильное понимание сущности и взаимосвязи рассматриваемых явле-ний (процессов);

последовательные, правильные, конкретные, без существенных неточ-ностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов;

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов);

понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Не зачтено»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

Типовые вопросы по дисциплине «Актуальные проблемы современной электроники»

Примеры задач для практических занятий

- 1. Определить интенсивности тормозного рентгеновского излучения трубок с вольфрамовым и медным анодами при рабочих напряжениях 60 и 100 кВ и токах 10 мА. Сравнить полученные значения интенсивностей.
- 2. Определить наименьшую длину волны рентгеновского излучения, если трубка работает при напряжении в 150 кВ?
- 3. Минимальная длина волны рентгеновского излучения, работающей при напряжении 60 кВ, равна 20.7 пм. Определить по этим данным постоянную Планка.
- 4. Определить порядковый номер элемента в Периодической системе элементов, если граничная частота K—серии характеристического рентгеновского излучения составляет $5.55*10^{18}$ Γ ц.
- 5. Длина волны некоторой рентгеновской линии от молибденового анода равна 0.0707 нм. Это излучение падает на кристалл из NaCl (плотность ρ =2.165 гр/см³) и отражение первого порядка от кубических плоскостей получается при θ =7.27°. Вычислить на основе этих данных число Авогадро.
- 6. Оценить время коммутации водородного тиратрона с накаленным катодом, если известно, что промежуток «анод–катод» составляет 3 см, давление водорода в рабочем режиме составляет 0.6 мм рт. ст. и напряжение на аноде равно 20 кВ.
- 7. Вычислить стартовые потери в тиратроне, работающем на частоте повторения импульсов $1~{\rm k}$ при рабочем напряжении $20~{\rm k}$ В, максимальном токе $2~{\rm k}$ А имеющем характерное время развития разряда $40~{\rm hc}$.
- 8. Определить условия, при которых искровой разрядник будет срабатывать за время порядка 0.1 нс.

- 9. Оценить величину энергии, приводящую к полной ионизации газа в искровом канале в искровом разряднике, наполненном аргоном до давления в 10 атмосфер.
- 10. Оценить минимальную концентрацию начальных электронов, при которой возможно формирование объемного разряда при давлениях в одну атмосферу и в десять атмосфер.

Вопросы к зачету

- 1. Природа рентгеновского излучения. Способы его получения.
- 2. Что собой представляет спектр тормозного рентгеновского излучения? Каким образом связаны между собой положение максимума интенсивности излучения и величина ускоряющего напряжения?
- 3. Перечислить основные закономерности характеристического рентгеновского излучения. Какую роль играет род материала анода?
- 4. Что собой представляют диаграммы направленности тормозного и характеристического рентгеновского излучения?
- 5. Единицы измерения энергетических параметров рентгеновского излучения. Летальные дозы рентгеновского излучения для человека. Доза рентгеновского излучения, получаемая человеком при прохождении профосмотра в рентгеновском кабинете (при флюорографии).
- 6. Типы рентгеновских трубок. Особенности короткофокусных трубок. Варианты конструкций короткофокусных трубок.
 - 7. Методы измерения длины волны рентгеновского излучения.
 - 8. Детекторы рентгеновского излучения. Основные типы и характеристики.
 - 9. Области применения рентгеновского излучения.
- 10. Какие проблемы в области рентгеновской техники решают исследователи и инженеры в настоящее время?
- 11. Какие требования предъявляются к сильноточным коммутаторам? Какие физические явления и процессы могут быть положены в основу коммутирующих элементов?
 - 12. Основные достоинства газоразрядных коммутаторов большого тока.
- 13. Устройство и принцип действия водородного тиратрона с накаленным катодом. Время коммутации.
- 14. Устройство и принцип действия водородных тиратронов с холодным катодом. Основные параметры этого типа газоразрядных коммутаторов.
- 15. Искровые разрядники. Их основные параметры. Разрядники—обострители. Предельные времена коммутации. Условия достижения субнаносекундных времен коммутации.
 - 16. Инжекционные тиратроны.
- 17. Мощные лазеры для технологических применений. Какими основными параметрами лазерного излучения определяется его область применения. Сравнить активные среды твердотельных и газоразрядных лазеров.
- 18. Охарактеризовать проблемы, связанные с реализацией высоких уровней лазерного излучения.
 - 19. Способы получения больших средних мощностей лазерного излучения.
- 20. Какими факторами ограничивается импульсная и средняя мощность излучения лазеров, применяемых в промышленных технологиях и в военных областях?
 - 21. Какие задачи решают с помощью лазеров в военных областях?
- 22. Можно ли обеспечить устойчивую связь между подводными судами с помощью лазерного излучения?
- 23. Какие физические принципы положены в основу оптической локации и экологического мониторинга окружающей среды? Перечислить и охарактеризовать.

- 24. В чем заключаются преимущества оптического излучения в телекоммуникационных технологиях?
- 25. Устройство и принцип действия лазерных гироскопов. Предельные возможности по определению угловых перемещений у лазерных гироскопов.
 - 26. Основные направления развития лазерной техники в современных условиях.
- 27. Перечислить основные проблемы в области лазерной физики, лазерной техники и современных промышленных лазерных технологиях.
- 28. Мощные электромагнитные импульсы и проблема подавления радиоэлектронного оборудования.
 - 29. Методы генерация мощных электромагнитных импульсов (ЭМИ).
- 30. Условие формирование высоковольтных импульсов напряжений с субнаносекундными передними фронтами. В чем состоит условие согласования импульсных генераторов с передающей антенной.
- 31. Фотоприёмные приборы с зарядовой связью устройство и принцип действия линейных и матричных приемников. Способы переноса зарядового пакета вдоль фотоприемной матрицы.
 - 32. Многоцветные фотоприемные матрицы.
- 33. Схемотехнические и технологические проблемы, сдерживающие развитие координатно—чувствительных фотоприемников цветных изображений.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Круглов Сергей Александрович, Заведующий кафедрой ПЭЛ

01.09.25 19:50 (MSK)

Простая подпись