МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Экономика, менеджмент и организация производства»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Б1.О.26 «МАТЕМАТИЧЕСКИЕ МЕТОДЫ И МОДЕЛИ В УПРАВЛЕНИИ ИННОВАЦИЯМ»

Направление подготовки 27.03.05 Инноватика

Направленность (профиль) подготовки «Технологическое предпринимательство»

Квалификация выпускника – бакалавр

Форма обучения – очная

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы – это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель – оценить соответствие знаний, умений и владений, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Промежуточный контроль по дисциплине осуществляется путем проведения экзамена. Форма проведения экзамена — тестирование и выполнение практических заданий. При необходимости, проводится теоретическая беседа с обучаемым для уточнения оценки. Выполнение заданий на практических и лабораторных занятиях в течение семестра и заданий на самостоятельную работу является обязательным условием для допуска к экзамену.

2. ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Контролируемые разделы (темы)	Код контролируемой	Наименование
дисциплины (результаты по разделам)	компетенции (или её части)	оценочного средства
Тема 1. Основы математического	ОПК-1.2, ОПК-8.1	Экзамен
моделирования в управлении		
инновациями		
Тема 2. Статистические методы в анализе	ОПК-1.2, ОПК-8.1	Экзамен
инновационных процессов		
Тема 3. Оптимизация ресурсов в	ОПК-1.2, ОПК-8.1	Экзамен
управлении инновациями		
Тема 4. Теория игр и принятие решений в	ОПК-1.2, ОПК-8.1	Экзамен
условиях неопределенности		

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Описание критериев и шкалы оценивания промежуточной аттестации

а) описание критериев и шкалы оценивания тестирования:

За каждый тестовый вопрос назначается максимально 1 балл в соответствии со следующим правилом:

- 1 балл ответ на тестовый вопрос полностью правильный;
- 0,5 балла отчет на тестовый вопрос частично правильный (выбраны не все правильные варианты, указаны частично верные варианты);
 - 0 баллов ответ на тестовый вопрос полностью не верный.
 - б) описание критериев и шкалы оценивания решения практического задания:

Шкала оценивания	Критерий
5 баллов	Задача решена верно
(эталонный уровень)	

Шкала оценивания	Критерий
3 балла	Задача решена верно, но имеются технические неточности в
(продвинутый уровень)	расчетах
1 балла	Задача решена верно, с дополнительными наводящими вопросами
(пороговый уровень)	преподавателя
0 баллов	Задача не решена

в) описание критериев и шкалы оценивания теоретико-практического вопроса:

Шкала оценивания	Критерий
5 баллов	Ответ полный, содержащий практический пример, основан на
(эталонный уровень)	понимании нормативных документов, оценке текущего состояния
	развития данной темы
3 балла	Ответ достаточно полный, содержащий практический пример,
(продвинутый уровень)	основан на понимании нормативных документов, оценке
	текущего состояния развития данной темы, имеются неточности в
	формулировках, неоднозначность определений терминов и
	понятий
1 балла	Ответ неполный, практический пример слабо отражает тематику
(пороговый уровень)	вопроса, слабое понимание нормативных документов, не
	сформулированы определения терминов и понятий
0 баллов	Ответ неверный

На экзамен выносятся 10 тестовых вопросов, 1 практическое задание, 2 теоретико-практических вопроса. Максимально студент может набрать 25 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «отлично», «хорошо», «удовлетворительно» и «неудовлетворительно».

Шкала оценивания	Критерий	
отлично	20 – 25 баллов	Обязательным условием является
(эталонный уровень)		выполнение всех предусмотренных в
хорошо	15 – 19 баллов	течении семестра заданий (на практических
(продвинутый уровень)		занятиях и при самостоятельной работе)
удовлетворительно	10 – 14 баллов	
(пороговый уровень)		
неудовлетворительно	0 – 9 баллов	Студент не выполнил всех предусмотренных
		в течении семестра текущих заданий (на
		практических занятиях и при
		самостоятельной работе)

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-1 Способен анализировать задачи	ОПК-1.2 Анализирует проблему, процессы и
профессиональной деятельности на основе	явления, относящиеся к сфере профессиональной
положений, законов и методов в области	деятельности, на основе знаний положений,
математики, естественных и технических	законов и методов в области математики,
наук	естественных и технических наук

1. Приближенное описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики – это:
Ответ: математическая модель
2. Математическое представление экономической системы (объектов, задачи, явлений, процессов и т. п.) – это:
Ответ: экономико-математическая модель
3. Какой из элементов не является элементом моделирования математической модели: а) объект исследования (явление, процесс); б) исследователь (субъект исследования); в) модель, осуществляющую отношение между исследователем и познаваемым объектом.
4. Дать понятие балансового метода:
а) это система неравенств, каждое из которых выражает требование баланса между производимым отдельными экономическими объектами и количеством продукции и совокупной
потребностью в этой продукции; б) это система уравнений, каждое из которых выражает требование баланса между производимым отдельными экономическими объектами и количеством продукции и совокупной потребностью в этой продукции; в) это метод взаимного сопоставления имеющихся материальных, трудовых и финансовых ресурсов и потребностей в них.
5. Система уравнений, которые удовлетворяют требованиям соответствия ресурса и его использования - это
Ответ: балансовая модель
6. Экономико-математическая модель межотраслевого баланса (МОБ) — это: а) макроэкономическая, вероятностная, имитационная, матричная модель; б) микроэкономическая, детерминированная, балансовая, регрессионная модель; в) макроэкономическая, детерминированная, имитационная, матричная модель; г) макроэкономическая, детерминированная, балансовая, матричная модель. Верный ответ: г)
7. Сколько структурных элементов включает в себя принципиальная схема
межотраслевого баланса (МОБ):
8. Матричная форма записи какой модели представлена уравнением $x = Ax + y$
Ответ: модели Леонтьева межотраслевого баланса
9. Матричная форма записи какой модели представлена уравнением $p = A^T p + v$
Ответ: модели равновесных цен
б) типовые практические задания
Задание 1 (модель Леонтьева межотраслевого баланса).

Дана матрица прямых материальных затрат двух отраслей экономики: $A = \begin{pmatrix} 0.1 & 0.2 \\ 0.2 & 0.3 \end{pmatrix}$ и

вектор валового выпуска $X = \begin{pmatrix} 100 \\ 200 \end{pmatrix}$. Составив модель Леонтьева межотраслевого баланса, найти

вектор конечного потребления $\it Y$.

Верный ответ:
$$Y = \begin{pmatrix} 50 \\ 120 \end{pmatrix}$$
.

Задание 2 (модель равновесных цен).

Дана матрица прямых материальных затрат двух отраслей экономики: $A = \begin{pmatrix} 0.1 & 0.2 \\ 0.2 & 0.3 \end{pmatrix}$ и

вектор равновесных цен $p = \begin{pmatrix} 40 \\ 80 \end{pmatrix}$. Составив модель равновесных цен $p = A^T p + v$, найти вектор норм добавленной стоимости v.

Верный ответ:
$$p = \binom{20}{48}$$
.

Задание 3 (модель международной торговли).

На основании данных таблицы провести анализ изменения структуры международной торговли между двумя странами мира.

Экспортер	Первая страна	Вторая страна
Первая страна	700	1200
Вторая страна	300	800

Составить структурную матрицу торговли A модели международной торговли.

Верный ответ:
$$A = \begin{pmatrix} 0.7 & 0.6 \\ 0.3 & 0.4 \end{pmatrix}$$
.

Задание 4 (задача линейного программирования, составление экономико-математической модели).

Составить задачу линейного программирования экономического содержания.

В состав строящейся АЗС входят две ёмкости общим объёмом не более 100 куб.м. Одна из ёмкостей предназначена для хранения дизельного топлива, другая — бензина. Строительство ёмкости для дизельного топлива обходится в 5 условных денежных единиц за 1 куб.м, бензина — в 8 условных денежных единиц за 1 куб.м. Особенности строительства таковы, что объём любой из ёмкостей должен быть не менее 20 куб.м. Использование ёмкости для дизельного топлива обеспечивает доход 5 условных денежных единиц на 1 куб.м, бензина — 7 условных денежных единиц на 1 куб.м. Определить объёмы каждой из ёмкостей, при которых доход АЗС будет максимальным, если на строительство ёмкостей может быть выделено не более 600 условных денежных единиц.

Верный ответ:
$$\begin{cases} x+y \le 100, \\ 5x+8y \le 600, \\ x \ge 20, \\ y \ge 20 \end{cases} \qquad f\left(x,y\right) = 5x+7y \to \max.$$

Задание 5 (задача линейного программирования, составление экономико-математической модели).

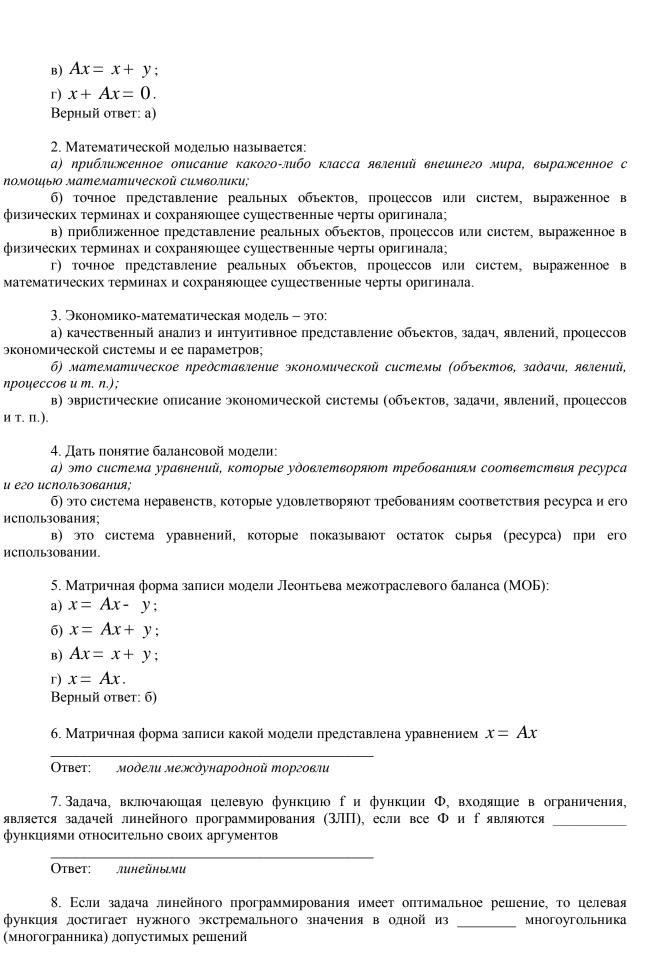
Составить задачу линейного программирования экономического содержания.

Завод выпускает два вида сплавов А и В, для изготовления которых требуется сталь, цветные металлы и электроэнергия. Данные о затратах каждого вида ресурсов на единицу веса выпускаемых сплавов, общие запасы ресурсов и расход электроэнергии даны в таблице

Затраты н	а ед. изделия	Ресурсы		
Α	В			
10	70	300	Сталь (кг)	
20	10	200	Цветные металлы	
300	300	3600	Электроэнергия	
3 т.р.	8 т.р.		Прибыль на одном предприятии	

Составить план выпуска сплавов, при котором доход завода максимален.

Верный ответ:
$$\begin{cases} 10x + 70y \le 300, \\ 20x + 10y \le 200, \\ 300x + 300y \le 3600, \\ x, y \ge 0 \end{cases} \quad f(x, y) = 3x + 8y \rightarrow \max.$$


в) теоретико-практические вопросы

- 1. Объясните, как математическое моделирование может помочь в принятии решений при разработке нового продукта. Приведите конкретный пример модели, которая может быть использована в этом процессе.
- 2. Опишите процесс использования статистических методов для анализа данных о потребительских предпочтениях. Какие основные статистические показатели вы бы использовали для интерпретации этих данных?
- 3. Как вы можете применить методы линейного программирования для оптимизации ресурсов в инновационном проекте? Приведите пример задачи, которую можно решить с помощью этого метода.
- 4. Объясните, что такое Nash-равновесие в контексте теории игр. Как это понятие может быть использовано для анализа конкурентных стратегий в сфере инноваций?
- 5. Проанализируйте ситуацию, когда компания сталкивается с неопределенностью на рынке. Какие математические методы вы бы использовали для оценки рисков и разработки стратегий управления?
- 6. Приведите пример многокритериального анализа, который можно использовать при выборе альтернативных решений в управлении инновациями. Как вы будете учитывать вес каждого критерия в вашем анализе?
- 7. Обсудите, как использование регрессионного анализа может помочь в прогнозировании успеха инновационного проекта. Какие факторы вы бы включили в модель, и как бы вы интерпретировали результаты?

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-8: Способен решать профессиональные задачи	7 1
на основе истории и философии нововведений,	1 2 12 1
математических методов и моделей для управления	
инновациями, компьютерных технологий в	методов и моделей для управления
инновационной сфере	инновациями

а) типовые тестовые вопросы

- 1. Матричная форма записи модели международной торговли имеет вид:
- a) x = Ax;
- 6) x = Ax + y;

9. В задачах линейного программирования решаемых симплекс-методом искомые переменные (управляющие переменные) должны быть:

Ответ:

вершин

Ответ: неотрицательными

10. При приведении задачи линейного программирования (ЗЛП) к виду основной ЗЛП ограничения вида «< или =» преобразуются в ограничения равенства добавлением к его левой части дополнительной неотрицательной переменной. Вводимые дополнительные неизвестные имеют вполне определенный смысл. Так, если в ограничениях исходной ЗЛП отражается расход и наличие производственных ресурсов, то числовое значение дополнительной переменной в решении задачи, записанной в виде основной, имеет смысл

- а) остатка ресурса
- б) двойственной оценки ресурса
- в) нехватки ресурса
- г) стоимости ресурса
- 11. Модель задачи линейного программирования, в которой целевая функция исследуется на максимум и система ограничений задачи является системой уравнений, называется:

Ответ: канонической

CIBCI. Namonu teenou

б) типовые практические задания

Задание 1 (линейное программирование, симплексный метод). Дана задача линейного программирования. Используя симплекс-метод, составить начальную (нулевую) симплекстаблицу. Найти первоначальное базисное решение задачи (опорный план задачи). Является ли полученный план оптимальным?

$$f(x) = 2x_1 + 3x_2 \otimes \max, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0.$$

Верный ответ: опорный план x = (0,0,10,15), f(x) = 0.

Задание 2 (двойственные задачи линейного программирования). Дана задача линейного программирования. Составить для нее соответствующую двойственную задачу (двойственные оценки обозначить через y_1, y_2).

$$f(x) = 2x_1 + 3x_2 \otimes \max_1 x_1 \ge 0, x_2 \ge 0$$

Верный ответ: $g(y) = 10y_1 + 15y_2$ ® min, $y_1 \ge 0$, $y_2 \ge 0$.

Задание 3 (двойственные задачи линейного программирования). Дана задача линейного программирования. Составить соответствующую двойственную задачу.

$$f(x) = x_1 - x_2 + 2x_3$$
 max. $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

Верный ответ: $g(y) = 10y_1 + 15y_2$ ® min, $y_1 \ge 0$, $y_2 \ge 0$.

Задание 4 (транспортная задача линейного программирования). Составить начальную таблицу транспортной задачи (матрицу перевозок), используя метод наименьшей стоимости.

Три автобазы должны отремонтировать автомобили соответственно в количествах 50, 70, 80. В их распоряжении имеются 2 завода, которые могут отремонтировать автомобили соответственно в количествах 110, 90. В связи с различным оборудованием заводов и разницей в типе автомобилей на автобазах стоимость ремонта автомобилей различна, и в условных денежных единицах приведены в таблице:

Автобазы Заводы	1	2	3
1	2	4	3
2	3	2	4

Составить план распределений автомобилей по заводам, при котором суммарная стоимость

ремонта минимальна.

Верный ответ: Матрица перевозок
$$X = \begin{pmatrix} 50 & 0 & 60 \\ 0 & 70 & 20 \end{pmatrix}$$

Задание 5 (транспортная задача линейного программирования). Для некоторой транспортной задачи линейного программирования составлен первоначальный опорный план –

матрица транспортных перевозок
$$X = \begin{pmatrix} 40 & 0 & 60 \\ 30 & 80 & 0 \end{pmatrix}$$
. Известная также матрица стоимостей

(тарифов на перевозку)
$$C = \begin{pmatrix} 2 & 3 & 4 \\ 5 & 2 & 3 \end{pmatrix}$$
.

Найти значение целевой функции (суммарную стоимость перевозок всех грузов) f(X). Верный ответ: f(X) = 630.

в) теоретико-практические вопросы

- 1. Вопрос: Как исторические примеры внедрения инноваций могут помочь в формулировании современных профессиональных задач? Приведите конкретный случай, где знания истории нововведений оказались полезными для решения актуальной проблемы.
- 2. Вопрос: Объясните, как философия инноваций влияет на выбор математических методов и моделей в управлении проектами. Какие философские подходы вы бы использовали для обоснования выбора конкретного метода?
- 3. Вопрос: Опишите, как можно использовать метод SWOT-анализа в сочетании с математическими моделями для оценки жизнеспособности инновационного проекта. Какие данные необходимо собрать для этого анализа?
- 4. Вопрос: Приведите пример использования статистического анализа для выявления трендов в области инноваций. Как вы будете интерпретировать полученные результаты и какие выводы можно сделать на их основе?
- 5. Вопрос: Как вы можете применить теорию вероятностей для оценки рисков при внедрении нового продукта на рынок? Приведите пример ситуации, где это было бы особенно актуально.
- 6. Вопрос: Обсудите, как методы оптимизации могут быть использованы для решения задач управления ресурсами в процессе разработки инновационного продукта. Какие критерии эффективности вы бы применили?
- 7. Вопрос: Как использование математических моделей может помочь в прогнозировании успешности внедрения инноваций? Приведите пример модели, которую можно использовать для этой цели, и объясните, какие факторы должны быть учтены.

Оператор ЭДО ООО "Компания "Тензор"