МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Ф. УТКИНА

Кафедра «Автоматики и информационных технологий в управлении»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДИСЦИПЛИНЫ *ЧИСЛЕННЫЕ МЕТОДЫ*

Специальность 12.05.01 «Электронные и оптико-электронные приборы и системы специального назначения»

ОПОП

«Оптико-электронные информационно-измерительные приборы и системы»

Квалификация выпускника – инженер Формы обучения – очная Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено – не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена.

Форма проведения экзамена — письменный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения экзаменационной оценки.

Паспорт оценочных материалов по дисциплине

№ п/п	Контролируемые разделы (темы) дисци- плины (результаты по разделам)	Код контролиру- емой компетен- ции (или её части)	Вид, метод, форма оценочного мероприятия
1	2	3	4
1	Раздел 1 Введение в численные методы	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В	Экзамен
2	Раздел 2 Решение систем линейных алгебраических уравнений	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В	Экзамен, КР
3	Раздел 3 Решение нелинейных уравнений	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В	Экзамен, КР
4	Раздел 4 Приближение функций	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В	Экзамен, КР
5	Раздел 5 Численное дифференцирование и интегрирование	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В	Экзамен, КР
6	Раздел 6 Численные методы решения задачи Коши для ОДУ	ОПК-1.1-3 ОПК-1.1-У ОПК-1.1-В ОПК-1.2-3 ОПК-1.2-У ОПК-1.2-В	Экзамен, КР

Критерии оценивания компетенций (результатов)

- 1). Уровень усвоения материала, предусмотренного программой.
- 2). Умение анализировать материал, устанавливать причинно-следственные связи.
- 3). Ответы на вопросы: полнота, аргументированность, убежденность, умение
 - 4). Качество ответа (его общая композиция, логичность, убежденность,

общая эрудиция)

5). Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

«Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Типовые контрольные задания или иные материалы

Вопросы к экзамену по дисциплине

- 1. «Колесо» современной научно-технической деятельности. Основные типы математических задач. Понятие численных методов.
 - 2. Источники погрешностей вычислений.
 - 3. Абсолютная и относительная погрешности.
 - 4. Погрешности арифметических операций над приближенными числами.

- 5. Погрешности вычисления функций.
- 6. Корректность вычислительной задачи.
- 7. Обусловленность вычислительной задачи.
- 8. Итерационные методы и их сходимость.
- 9. Нормы вектора и матрицы.
- 10. Обусловленность задачи решения СЛАУ.
- 11. Метод Гаусса решения СЛАУ. Схемы единственного деления, частичного и полного выбора.
 - 12. Решение СЛАУ с помощью LU- разложения матриц.
 - 13. Метод квадратных корней для решения СЛАУ.
 - 14. Метод простой итерации для решения СЛАУ.
 - 15. Метод бисекции для решения нелинейного уравнения.
 - 16. Метод простой итерации для решения нелинейного уравнения.
 - 17. Метод Ньютона для решения нелинейного уравнения.
 - 18. Постановка задачи приближения функций.
 - 19. Интерполяция функций обобщенными многочленами.
- 20. Полиномиальная интерполяция функций. Интерполяционный многочлен Лагранжа.
 - 21. Интерполяция сплайнами.
 - 22. Метод наименьших квадратов в задаче приближения функций.
 - 23. Методы численного дифференцирования функций.
- 24. Методы численного интегрирования функций. Формулы прямоугольников.
 - 25. Методы численного интегрирования функций. Формула трапеций.
 - 26. Методы численного интегрирования функций. Формула Симпсона.
 - 27. Задача Коши для ДУ 1-го порядка.
 - 28. Использование формулы Тейлора для решения задачи Коши.
 - 29. Методы Эйлера для решения задачи Коши.
 - 30. Методы Эйлера Коши для решения задачи Коши.
 - 31. Методы Рунге-Кутты для решения задачи Коши.
 - 32. Методы Адамса для решения задачи Коши.

Типовые задания для самостоятельной работы

1. Прямые и обратные вычислительные задачи в различных сферах инженерной деятельности.

- 2. Аппаратные и программные средства для реализации вычислительных процедур.
 - 3. Способы уменьшения вычислительных погрешностей.
 - 4. Подходы к решению некорректных вычислительных задач.
 - 5. Численные методы решения СЛАУ специального вида.
 - 6. Методы решения нелинейных уравнений специального вида.
 - 7. Инженерные задачи, использующие приближения функций.
- 8. Сплайны специального вида и их использование при решении инженерных задач.
 - 9. Минимизация погрешностей численного интегрирования.
 - 10. Инженерные задачи, требующие численного решения ДУ.

Практические занятия

№ п/п	№ раздела дисциплины	Наименование практического занятия	Трудоемкость, час
1	1	Абсолютная и относительная погрешности. Погрешности арифметических операций над приближенными числами. Погрешности вычисления функций.	5
2	2	Решение СЛАУ методом Гаусса, с помощью LU- разложения матриц, методом квадратных корней и методом простой итерации.	5
3	3	Решение нелинейных уравнений методом бисекции, методом простой итерации и методом Ньютона.	5
4	4	Интерполяция функций обобщенными многочленами. Полиномиальная интерполяция. Интерполяционный многочлен Лагранжа. Интерполяция сплайнами. Метод наименьших квадратов.	6
5	5	Вычисление производных функций. Вычисление определенных интегралов методами прямоугольников, трапеций и методом Симпсона.	5
6	6	Решение задачи Коши методами Эйлера, Эйлера – Коши, Рунге – Кутты и Адамса.	6

СПИСОК

заданий на проверку знания основ численных методов

Задание 1. Абсолютная и относительная погрешности. Погрешности арифметических операций над приближенными числами. Погрешности вычисления функций.

- <u>1.</u> Определить, какое приближение точнее: $9/11 \approx 0.818$; $\sqrt{18} \approx 4.24$.
- 2. Округлить сомнительные цифры числа, оставив верные знаки:
 - а) в узком смысле ;б) в широком смысле.
 - a) $72.353 (\pm 0.026)$; b) 2.3544, $\delta = 0.2\%$.
- 3. Вычислить и определить погрешности результата

$$\frac{m^2n^3}{\sqrt{k}}$$
, $\varepsilon \partial e \ m = 28.3 \ (\pm 0.02), \ n = 7.45 \ (\pm 0.01), \ k = 0.678 \ (\pm 0.003).$

<u>4.</u> Пусть корни квадратного уравнения $x^2 + bx + c = 0$ вычисляются при значениях коэффициентов $b \approx 10^3$, $c \approx 1$. Каково влияние погрешностей задания коэффициентов на точность вычисляемых значений?

Задание 2. Решение СЛАУ методом Гаусса, с помощью LU- разложения матриц, методом квадратных корней и методом простой итерации.

- <u>1.</u> Решить систему линейных уравнений с точностью ε =10⁻⁴ различными способами с использованием системы Matlab:
 - а) методом Гаусса (по схеме единственного деления)
 - b) методом простой итерации;
 - с) с помощью LU- разложения матриц.

Вариант 1.

$$\begin{cases} 3,01x_1 - 0,14x_2 - 0,15x_3 = 1,00, \\ 1,11x_1 + 0,13x_2 - 0,75x_3 = 0,13, \\ 0,17x_1 - 2,11x_2 + 0,71x_3 = 0,17; \end{cases}$$

Вариант 2.

$$\begin{cases} -0.20x_1 + 1.60x_2 - 0.10x_3 = 0.30, \\ -0.30x_1 + 0.10x_2 - 1.50x_3 = 0.40, \\ 1.20x_1 - 0.20x_2 + 0.30x_3 = -0.60; \end{cases}$$

Вариант 3.

$$\begin{cases} 9,12x_1 + 5,63x_2 + 7,81x_3 = 9,80, \\ 3,84x_1 + 5,15x_2 + 2,86x_3 = 6,77, \\ 4,18x_1 + 5,79x_2 + 1,21x_3 = 5,82; \end{cases}$$

Вариант 4.

$$\begin{cases} -1.14x_1 - 0.04x_2 + 0.21x_3 = -1.24, \\ 0.25x_1 - 1.23x_2 - 0.17x_3 = 0.95, \\ -0.21x_1 - 0.17x_2 + 0.80x_3 = 2.56; \end{cases}$$

Вариант 5.

$$\begin{cases} 0.73x_1 + 1.24x_2 - 0.38x_3 = 0.58, \\ 1.25x_1 + 0.66x_2 - 0.78x_3 = 0.66, \\ 0.75x_1 + 1.22x_2 - 0.83x_3 = 0.92; \end{cases}$$

<u>2.</u> Сформировать СЛАУ с симметричной положительно определенной матрицей размерности 5×5 с использованием датчика псевдослучайных чисел и решить ее методом квадратных корней.

Задание 3. Решение нелинейных уравнений методом бисекции, методом простой итерации и методом Ньютона.

- 1. Отделить корни заданного уравнения:
 - а) графически;
 - б) с использованием системы Matlab.
- <u>2.</u> С помощью системы Matlab. вычислить один корень уравнения с точностью $\varepsilon = 10^{-3}$, используя метод простой итерации.
- <u>3.</u> Составить программу для вычисления с помощью системы Matlab всех корней заданного уравнения методом бисекции с точностью ε =10⁻⁶.
- <u>4.</u> Составить программу для вычисления с помощью системы Matlab одного корня заданного уравнения методом Ньютона с точностью ε =10⁻⁶.

Вариант 1.
$$cosx - (x-1)^2 = 0$$
;

$$8\cos x - x = 6;$$

Вариант 2.
$$0.5^x + 1 = (x-2)^2$$
;

Вариант 3.

Вариант 4.
$$2x - \lg x - 7 = 0$$
;

Вариант 5.
$$x \cdot \ln(x+1) = 1$$
.

Задание 4. Интерполяция функций обобщенными многочленами. Полиномиальная интерполяция. Интерполяционный многочлен Лагранжа. Интерполяция сплайнами. Метод наименьших квадратов.

<u>1.</u> По заданной таблице значений функции составить формулу интерполяционного многочлена Лагранжа. Построить его график и отметить на нем узловые точки.

	X	2	2 3	5	
Вариант 1.	У	۷	1	7	
		-			
Вариант 2.	X		0 2	2 3	
	У	-	-1 -	4 2	
			•		
Вариант 3.	X	-1	1 0	3	
	у	7	' -1	4	
Вариант 4.		7	0	12	
	X	7	9	13	
	У	2	-2	3	
Вариант 5.					
	X	3	5	7	
	У	4	-1	7	

<u>2.</u> Вычислить одно значение заданной функции для промежуточного значения аргумента с помощью интерполяционного многочлена Лагранжа и оценить погрешность интерполяции.

х	f(x)=
	$\frac{\lg x}{x} + x^2$
1,3	1,7777
2,1	4,5634
3,7	13,8436
4,5	20,3952
6,1	37,3387
7,7	59,4051
8,5	72,3593

Номер варианта	X
1	1,7
2	2,8
3	4,1
4	5,2
5	7,3

Задание 5. Вычисление производных функций. Вычисление определенных интегралов методами прямоугольников, трапеций и методом Симпсона.

<u>1.</u> Вычислить значение производной функции, заданной таблично, оценить погрешность метода.

номер варианта	функция f(x)	X ₀	
1	sinx	0,6	
2	cosx	0,05	
3	sinx	1,05	
4	cosx	0,85	
5	sinx	0,95	

<u>2.</u> Вычислить интеграл заданной функции при n=10 по формуле:

- а) прямоугольников;
- б) трапеций;
- в) Симпсона.

Произвести оценку погрешности методов интегрирования.

1.
$$\int_{1,2}^{2,2} \frac{\lg(x+2)}{x} dx;$$

3.
$$\int_{0.8}^{1.8} \frac{\sin(2x)}{x^2} dx;$$

5.
$$\int_{-1}^{1} (x - e^{2x}) dx$$
;

2.
$$\int_{0.4}^{2.4} \frac{e^{0.03x}}{x} dx$$
;

$$4. \int_{1.6}^{3.6} \frac{x}{2} \cdot \lg\left(\frac{x^2}{2}\right) dx;$$

Задание 5. Решение задачи Коши методами Эйлера, Эйлера – Коши, Рунге – Кутты и Адамса.

<u>1.</u> Решить задачу Коши для дифференциального уравнения y' = f(x, y) на отрезке [a; b] при заданном начальном условии y(a)=с и шаге интегрирования h:

- 1) методом Эйлера, построить график интегральной кривой;
- 2) методом Эйлера- Коши, построить график интегральной кривой;
- 3) методом Рунге- Кутта, построить график интегральной кривой;
- 4) методом Адамса, построить график интегральной кривой.

Номер	f(x, y)	a	b	С	h
варианта					
1	$1 - \sin(0.75x - y) + \frac{1.77}{x}$	0	1	0	0,1
2	$x + \cos \frac{y}{\sqrt{5}}$	1,8	2,8	2,6	0,1
3	$xy + \sin x$	0	1	2	0,1
4	$\cos(1.5x - y^2) - 1.3$	-1	1	0,2	0,2
5	$1 + 0.2y \cdot \sin x - y^2$	0	1	0	0,1