МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет»

КАФЕДРА КОСМИЧЕСКИХ ТЕХНОЛОГИЙ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.3.Б.06 «Основы построения инфокоммуникационных систем»

Направление подготовки

02.03.01 Математика и компьютерные науки

ОПОП академического бакалавриата

«Математическое обеспечение космических информационных систем»

Квалификация (степень) выпускника — бакалавр Форма обучения — очная Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена и теоретического зачета.

Форма проведения экзамена — письменный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения экзаменационной оценки.

Форма проведения теоретического зачета — письменный ответ по билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается один теоретический вопрос. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения оценки. Оценивание знаний производится по системе «зачтено — не зачтено».

Паспорт фонда оценочных средств по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	Общие сведения и структура радиосистемы передачи информации	ПК-1.1, ПК-1.2, ПК-3.1, ПК-3.2	зачет
2	Особенности представления информации	ПК-1.1, ПК-1.2, ПК-3.1, ПК-3.2	зачет
3	Дискретно-аналоговое представление	ПК-1.1, ПК-1.2, ПК-3.1, ПК-3.2	зачет

4	Обобщенные дискретные представления	ПК-1.1, ПК-1.2, ПК-3.1, ПК-3.2	зачет	
5	Сжатие данных при телеизмерениях	ПК-1.1, ПК-1.2, ПК-3.1, ПК-3.2	зачет	
6	Структурная схема адаптивной системы	ПК-1.1, ПК-1.2, ПК-3.1, ПК-3.2	зачет	
	сжатия данных			
7	Методы рационального кодирования	ПК-1.1, ПК-1.2, ПК-3.1, ПК-3.2	экзамен	
8	Разделение каналов в радиолинии	ПК-1.1, ПК-1.2, ПК-3.1, ПК-3.2	экзамен	
9	Радиотелеметрические системы с	ПК-1.1, ПК-1.2, ПК-3.1, ПК-3.2	экзамен	
	временным разделением каналов			
10	Цифровые и адресные РТМС	ПК-1.1, ПК-1.2, ПК-3.1, ПК-3.2	экзамен	
11	Радиотелеметрическая система с ЧРК	ПК-1.1, ПК-1.2, ПК-3.1, ПК-3.2	экзамен	

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Шкала оценки сформированности компетенций

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме экзамена, используется пятибалльная оценочная шкала:

«Отлично» заслуживает обучающийся, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется обучающимся, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает обучающийся, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется обучающимся, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает обучающийся, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется обучающимся, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится обучающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий

по соответствующей дисциплине.

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме теоретического зачета, используется оценочная шкала «зачтено – не зачетено»:

Оценка «зачтено» выставляется обучающемуся, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и лабораторной работы, систематическая активная работа на практических занятиях.

Оценка «не зачтено» выставляется обучающемуся, который не справился с 50% вопросов и заданий при прохождении тестирования, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях элементов курса и использования предметной терминологии у обучающегося нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

Типовые контрольные задания или иные материалы

Типовые задания для курсовой работы

Разработать радиотелеметрическую систему, которая передает информацию с заданными показателями качества. Необходимо обеспечить сокращение избыточности информации в данной радиосистеме передачи данных, обосновать и выбрать в соответствии с исходными данными систему сжатия информации, систему уплотнения каналов, а также определить структуру группового сигнала и его длительность. Исходные данные выбираются согласно варианта

№ варианта	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Вероятность ошибки на_символ	10-6	10 ⁻⁵	10-4	10-3	10-4	10-5	10 ⁻⁶	10-3	10-4	10-5	10-6	10-3	10-4	10 ⁻⁵	10-4
Показатель верногсти $\gamma_{3\phi}$ %	0.2	0.1	0.3	0.7	0.3	0.4	0.5	0.6	0.7	0.1	0.4	0.5	0.2	0.3	0.5
Ширина спектра (Гц)	100	500	2000	600	400	3000	300	200	1500	700	100	3500	2500	50	500
Тип сигнала (ФПВ)	норм	равн	нест	норм	равн	нест	равн	норм	нест	норм	равн	нест	нест	норм	нест
Форма спектра	равн	норм	равн	норм	равн	норм	равн	норм	норм	равн	норм	равн	норм	равн	норм
Число каналов	100	500	700	900	1000	2000	300	400	500	50	70	80	100	250	100
Квантователь	АРИКМ	РИКМ	РИКМ	АРИКМ	ИКМ	РИКМ	РИКМ	ИКМ	РИКМ	ИКМ	АРИКМ	адδ	РИКМ	АРИКМ	РИКМ
Отношние с/ш квант, дБ	30	35	35	40	25	30	30	35	30	30	35	30	35	30	30
Уплотнение	ВРК	форм	маж	ВРК	форм	маж	Маж	форм	маж	ВРК	форм	маж	ВРК	форм	маж
Алгоритм сжатия	AK	AD	AK	AD	AK	AD	AK	AD	AK	AD	AK	AD	AK	AD	AK
Вид модуляции	ΦМ	ОФМ	ДОФМ	ЧМ	ОФМ	ΦМ	ДОФМ	ЧМ	ДОФМ	ΦМ	ОФМ	ΦМ	ДОФМ	ОФМ	ОФМ

Вопросы к зачету по дисциплине

- 1. Задачи космических РСПИ. Технические требования к космическим РСПИ
- 2. Основные подсистемы космических РСПИ
- 3. Упрощенная структурная схема космической РСПИ
- 4. Формы представления информации
- 5. Классификация дискретных представлений
- 6. Рациональное представление информации
- 7. Точностные характеристики передаваемой информации
- 8. Дискретно-аналоговое представление регулярными выборками
- 9. Физическая трактовка процессов интерполяции сигналов

- 10. Задачи идеальной интерполяции
- 11. Интерполяция алгебраическими полиномами
- 12. Определение частоты опроса
- 13. Обобщенные дискретные представления
- 14. Представления сообщений с помощью полиномов Лежандра
- 15. Представление сообщений с помощью функций Уолша
- 16. Сжатие данных при телеизмерениях
- 17. Классификация и основные характеристики метода сжатия данных
- 18. Программируемые РТМС
- 19. Адаптивные методы сжатия. Алгоритмы полиноминальных методов сжатия
- 20. Адаптивные методы сжатия. Экстраполяционные методы сжатия
- 21. Адаптивные методы сжатия. Оптимальное линейное предсказание
- 22. Адаптивные методы сжатия. Интерполяционные методы сжатия
- 23. Адаптивные методы сжатия. Сравнение полиномиальных методов сжатия

Вопросы к экзамену по дисциплине

- 1. РТМС с адаптивной дискретизацией.
- 2. РТМС со сжатием данных по полосе.
- 3. РТМС с адаптивной дискретизацией в каждом канале с буферной памятью.
- 4. РТМС с исключе-нием избыточных данных.
- 5. РТМС с адаптивной дискретизацией в каждом канале без.
- 6. Комбинированные РТМС.
- 7. РТМС с адаптивной коммутацией каналов.
- 8. Обобщенная структурная схема.
- 9. РТМС с адаптивной коммутацией каналов при параллельном анализе погрешности.
- 10. РТМС с автоматическим регулированием частоты опроса датчиков.
- 11. Равномерное квантование мгновенных значений сигнала.
- 12. Неравномерное квантование мгновенных значений.
- 13. Оптимальное квантование.
- 14. Адаптивное квантование.
- 15. Адаптация по входному сигналу.
- 16. Адаптация по выходному сигналу.
- 17. Теория разностного кодирования.
- 18. Дельта модуляция.
- 19. Линейная дельта модуляция.
- 20. Адаптивная дельта модуляция.
- 21. Адаптивно-разностная ИКМ (АРИКМ).
- 22. АРИКМ с адаптивным квантованием.
- 23. АРИКМ с адаптивным предсказателем.
- 24. Сравнение цифровых систем кодирования.
- 25. Классификация методов разделения каналов.
- 26. Условия линейной разделимости сигналов.
- 27. Разделение сигнала по форме.
- 28. Частотное разделение каналов (ЧРК).
- 29. Временное разделение каналов.
- 30. Мажоритарное уплотнение каналов.