ПРИЛОЖЕНИЕ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Основы электроники»

Направление подготовки

09.03.02 «Информационные системы и технологии»

ОПОП бакалавриата

«Информационные системы в технике и технологиях»

Квалификация (степень) выпускника – бакалавр

Формы обучения – очная, заочная

г. Рязань

Оценочные материалы предназначены для контроля знаний обучающихся по дисциплине «Основы электроники» и представляют собой фонд оценочных средств, образованный совокупностью учебно-методических материалов (контрольных заданий, описаний лабораторных работ), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций обучающихся целям и требованиям основной образовательной программы в ходе проведения учебного процесса.

Основная задача — обеспечить оценку уровня сформированности общепрофессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и проведения, в случае необходимости, индивидуальных консультаций. К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на практических занятиях и лабораторных работах.

Текущий контроль студентов по данной дисциплине проводится на основании результатов выполнения ими практических и лабораторных работ. При выполнении практических работ применяется система оценки результатов «зачтено – не зачтено». Для оценивания результатов выполнения лабораторных работ применяется система оценки «зачтено – не зачтено». Количество практических и лабораторных работ по дисциплине определено утвержденным учебным графиком.

Промежуточная аттестация студентов по данной дисциплине проводится на основании результатов выполнения и защиты ими курсовой работы. Результаты выполнения курсовой работы оцениваются оценками «неудовлетворительно», «удовлетворительно», «хорошо», «отлично».

По итогам курса студенты сдают в конце семестра обучения экзамен. Форма проведения экзамена — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса по темам курса. Результаты сдачи экзамена оцениваются оценками «неудовлетворительно», «удовлетворительно», «хорошо», «отлично».

1 Паспорт фонда оценочных средств по дисциплине

ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности.

ОПК-1.1. Демонстрирует естественнонаучные и общеинженерные знания, знания методов математического анализа и моделирования, теоретичесекого и экспериментального исслелования.

Знает: физические основы, принципы функционирования и реализации полупроводниковых элементов, основы построения и функционирования электрических цепей, типовые методы построения и расчета электрических схем.

Умеет: составлять математические выражения для описания электрических схем, использовать программные средства моделирования и анализа электрических узлов и цепей.

Владеет: приемами описания и анализа электрических схем в различных режимах работы (переходные, установившиеся).

ОПК-1.2. Применяет естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности.

Знает: приемы описания, моделирования и расчета полупроводниковых электрических схем.

Умеет: решать профессиональные задачи с применением естественнонаучных и

общеинженерных знаний, касающиеся расчета полупроводниковых электрических схем.

Владеет: навыками практического расчета электрических схем для решения задач профессиональной деятельности.

N₂	Контролируемые	Код	Наименование
п/п	разделы дисциплины	контролируемой	оценочного средства
	H	компетенции	
1	Полупроводниковые электронные	ОПК-1.1-3	Экзамен
	приборы	ОПК-1.1-У	Отчет о выполнении
			практического
			занятия № 1
2	Схемы включения диодов	ОПК-1.1-У	Экзамен
		ОПК-1.1-В	Отчет о выполнении
		ОПК-1.2-У	заданий практических
		ОПК-1.2-3	занятий №2, 3
		ОПК-1.2-В	Защита ЛР №1.
3	Биполярные транзисторы	ОПК-1.1-3	Экзамен
		ОПК-1.2-3	
4	Операционные усилители	ОПК-1.2-3	Экзамен
		ОПК-1.1-У	Защита ЛР №2
		ОПК-1.2-У	Отчет о выполнении
			практического
			занятия № 4
			Курсовая работа
5	Логические основы цифровой техники	ОПК-1.1-У	Отчет о выполнении
		ОПК-1.1-В	заданий практическог
		ОПК-1.2-3	занятия №5, 6.
		ОПК-1.2-У	Защита ЛР №3.
		ОПК-1.2-В	Экзамен
6	Триггеры	ОПК-1.1-В	Отчет о выполнении
		ОПК-1.2-3	задания практических
		ОПК-1.2-У	занятий №7, 8.
		ОПК-1.2-В	Защита ЛР №4.
			Экзамен

Критерии оценивания компетенций по результатам выполнения практических и защиты лабораторных работ, курсового проекта и сдачи экзамена

- 1. Уровень усвоения материала, предусмотренного программой.
- 2. Умение анализировать материал, устанавливать причинно-следственные связи.
- 3. Качество ответов на вопросы: логичность, убежденность, общая эрудиция.

Критерии защиты результатов выполнения практических заданий (работ):

«зачтено» - студент правильно выполнил задание практической работы, ориентируется в механизмах и последовательности решения поставленных в практическом задании задач, представляет отчет о выполнении практического задания;

«не зачтено» - студент не имеет отчета о практической работе, с ошибками или не полностью выполнил задание практической работы, плохо ориентируется в принципах решения задач практического задания, не предоставил отчета о выполнении практического задания.

Критерии приема лабораторных работ:

«зачтено» - студент представил полный отчет о лабораторной работе, ориентируется в представленных в работе результатах, осознано и правильно отвечает на контрольные вопросы;

«не зачтено» - студент не имеет отчета о лабораторной работе, в отчете отсутствуют некоторые пункты задания на выполнение работы, при наличии полного отчета студент не ориентируется в представленных результатах и не отвечает на контрольные вопросы.

Критерии выставления оценок при аттестации результатов обучения по дисциплине в виде курсовой работы:

- на «отлично» оцениваются правильное и полное решение задачи, определенной заданием, грамотное построение и оформление записки, глубокое раскрытие проблем, решаемых в курсовой работе, предоставление полных ответов при защите на вопросы, касающиеся выполнения работы, и смежные вопросы, показывающие всестороннее освоение материала по тематике курсовой работы;
- на «хорошо» оцениваются правильное решение задачи, определенной заданием, с имеющимися незначительными погрешностями при построении и оформлении записки, достаточно полное раскрытие проблем, решаемых в курсовой работе, незначительные погрешности в ответах при защите на вопросы, касающиеся выполнения работы, и смежные вопросы;
- на «удовлетворительно» оцениваются не достаточно полное решение задачи, определенной заданием, с имеющимися погрешностями при построении и оформлении записки, неполное раскрытие проблем, решаемых в курсовой работе, погрешности в ответах при защите на вопросы, касающиеся выполнения работы, и смежные вопросы;
- на «неудовлетворительно» оцениваются неполное решение задачи, определенной заданием, с серьезными погрешностями при построении и оформлении записки, слабое раскрытие проблем, решаемых в курсовой работе, отсутствие ответов при защите на вопросы, касающиеся выполнения работы, и смежные вопросы;

Критерии выставления оценок при аттестации результатов обучения по дисциплине в виде экзамена:

- на «отлично» оценивается глубокое раскрытие вопросов, поставленных в экзаменационном задании, пониманиие смысла поставленных вопросов, полные ответы на смежные вопросы, показывающие всестороннее, системное усвоение учебного материала;
- на «хорошо» оценивается полное раскрытие вопросов, поставленных в экзаменационном задании, понимание смысла поставленных вопросов, но недостаточно полные ответы на смежные вопросы;
- на «удовлетворительно» оценивается неполное раскрытие вопросов экзаменационного задания и затруднения при ответах на смежные вопросы;
- на «неудовлетворительно» оценивается слабое и неполное раскрытие вопросов экзаменационного задания, отсутствие осмысленного представления о существе вопросов, отсутствие ответов на дополнительные вопросы.

2 Примеры контрольных вопросов для оценивания компетенций

ОПК 1.1-3

- 1. Объясните механизмы получения полупроводников с n- и p- типами проводимости.
- 2. Нарисуйте структурную схему р-п-перехода. Объясните механизм образования полупроводникового барьера.
- 3. Объясните принципы управления р-п-переходом.
- 4. Постройте график вольтамперной (ВАХ) характеристики полупроводникового диода. Объясните его особенности.
- 5. Постройте график ВАХ стабилитрона. Объясните его особенности.
- 6. Объясните механизмы выпрямления напряжения однополупериодной и двухполупериодной (мостовой) схемами на выпрямительных диодах.
- 7. Какой режим р-п-перехода является рабочим для выпрямительного диода, стабилитрона, варикапа, свето- и фотодиода?
- 8. Объясните механизмы построения биполярных транзисторов.

ОПК 1.1-У

- 1. Составьте математические выражения, используемые для расчета значения рабочей точки (оцените величину балластного резистора) в схеме параметрического стабилизатора.
- 2. Составьте формулу связи токов эмиттера, базы и коллектора транзистора.
- 3. Какие программные средства можно использовать для моделирования и анализа электронных устройств и узлов?
- 4. Как задаются параметры колебаний в программных средствах моделирования?
- 5. Как оцениваются параметры колебания с помощью средств моделирования и анализа электрических цепей?
- 6. Запишите формулу для коэффициента передачи схемы инвертирующего включения операционного усилителя.
- 7. Запишите формулу для коэффициента передачи схемы неинвертирующего включения операционного усилителя.
- 8. В каком состоянии должны находиться эмиттерно-базовый и коллекторно-базовый переходы биполярного транзистора, находящегося в активном режиме и режимах отсечки и насышения?
- 9. Как создается таблица истинности комбинационной схемы?
- 10. Как на основе заполненной таблицы истинности комбинационной схемы реализуется синтез электронной схемы?

ОПК 1.1-В

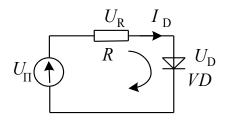
- 1. Рассчитайте число разрядов управляющей шины мультиплексора с 8-ю информационными входами.
- 2. Рассчитайте число входов шифратора с 5-ю выходами.
- 3. Какие базовые схемы используются при синтезе устройства, формула которого записана в совершенной дизъюнктивной нормальной форме (СДНФ)?
- 4. Какие базовые схемы используются при синтезе устройства, формула которого записана в совершенной конъюнктивной нормальной форме (СКНФ)?
- 5. Нарисуйте схему инвертирующего усилителя на операционном усилителе и составьте формулу, позволяющую определить его коэффициент передачи по напряжению.
- 6. Нарисуйте схему неинвертирующего усилителя на операционном усилителе и составьте формулу, позволяющую определить его коэффициент передачи по напряжению.
- 7. Нарисуйте схему усилителя на операционном усилителе в дифференцирующей схеме включения и составьте формулу, позволяющую определить его коэффициент передачи по напряжению.

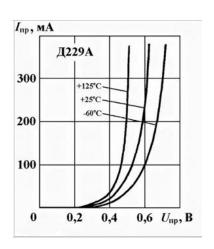
ОПК 1.2-3

- 1. Назовите формы описания комбинационных логических устройств и объясните их отличия.
- 2. Начертите график вольтамперной характеристики (ВАХ) выпрямительного диода и объясните его особенности.
- 3. Начертите график ВАХ стабилитрона и объясните его особенности.
- 4. Какой вид имеет напряжение на выходе мостовой схемы выпрямления напряжения синусоидальной формы.
- 5. Как реализуется построение таблиц истинности триггеров?
- 6. Представьте формулы описания и составьте таблицу истинности дешифратора 2→4.
- 7. Представьте формулы описания и составьте таблицу истинности мультиплексора $4 \rightarrow 1$.

ОПК 1.2-У

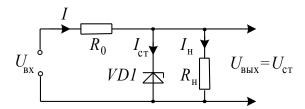
- 1. Почему асинхронные и синхронные RS-триггеры имеют запрещенные состояния для входных сигналов, а D-, T- и JK- триггеры таких состояний не имеют?
- 2. Объясните механизмы преобразования JK-триггера в RS-, D- и Т-триггеры.

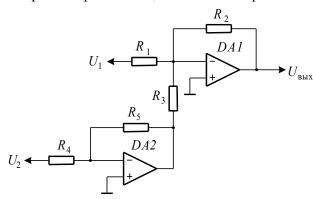

- 3. Какими элементами следует дополнить схемы асинхронных RS-триггеров для преобразования их в синхронные?
- 4. Чем отличается работа потенциального (статического) и динамического D-триггеров?
- 5. Объясните механизм в соответствии с которым бистабильная ячейка на основе RSтриггера позволяет запоминать бит информации.
- 6. Как реализуются триггеры М-Ѕ типа?


ОПК 1.2-В

- 1. Запишите формулу для определения коэффициента передачи напряжения дифференциатором на операционном усилителе в инвертирующей схеме включения. Отобразите в форме графика реакцию дифференциатора на последовательность прямоугольных однополярных импульсов, поступающих на его вход.
- 2. Запишите формулу для определения коэффициента передачи напряжения интегратором на операционном усилителе в инвертирующей схеме включения. Отобразите в форме графика реакцию дифференциатора на последовательность прямоугольных двуполярных импульсов, поступающих на его вход.
- 3. Составьте таблицу истинности для асинхронного RS-триггера, выполненного на элементах И-НЕ.
- 4. Составьте таблицу истинности для асинхронного RS-триггера, реализованного на элементах ИЛИ-НЕ.
- 5. Представьте схему комбинационного цифрового устройства, имеющего n входов и 2^n выходов для n=3.
- 6. Как на основе двух дешифраторов $2 \rightarrow 4$ построить дешифратор $3 \rightarrow 8$.

Примеры задач ОПК 1.2-У, ОПК 1.2.-У


1. Графоаналитическим методом выполнить расчет силы тока, протекающего через диод и падение напряжение на нем в схеме


где U_{Π} - напряжение источника питания (источника ЭДС); U_{R} , U_{D} - падение напряжения на резисторе R и диоде VD соответственно, I_{D} - сила тока, протекающего через цепь, состоящую из последовательно включенных и R и VD. Расчет выполнить для диода Д229А при температуре 25°С и U_{Π} =2B, R=10Ом.

2. Выполнить расчет значения балластного резистора R_0 параметрического стабилизатора

для входного напряжения $U_{\text{вx}}$ =15B, тока стабилизации $I_{\text{ст}}$ =5 мA стабилитрона КС156A ($U_{\text{ст}}$ =5,6 B), и сопротивления нагрузки R_{H} =1 кОм.

3. Рассчитать значения резисторов $R_1 - R_5$ схемы на операционном усилителе

для коэффициентов передачи K_1 =-1/3 и K_2 =5/6 входных напряжений U_1 =1 В и U_2 =-2 В. Вычислить значение выходного напряжения $U_{\text{вых}}$.

- 4. Сформируйте переключательную функцию в совершенной дизъюнктивной нормальной форме (СДНФ), имеющую 4 входа, и реализуйте логическую схему на ее основе.
- 5. Сформируйте переключательную функцию в совершенной конъюнктивной нормальной форме (СКНФ), имеющую 4 входа, и реализуйте логическую схему на ее основе.

3. Формы контроля

3.1. Формы текущего контроля

Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно при подготовке к лабораторным работам и на практических занятиях.

3.2 Формы промежуточного контроля

Форма промежуточного контроля по дисциплине – защита лабораторных работ, защита курсовой работы.

3.3. Формы заключительного контроля

Форма заключительного контроля по дисциплине – экзамен.

4. Критерий допуска к экзамену

К экзамену допускаются студенты, защитившие ко дню проведения экзамена по расписанию экзаменационной сессии все лабораторные работы и практические работы, а также курсовую работу.

Студенты, не защитившие ко дню проведения экзамена по расписанию экзаменационной сессии хотя бы одну лабораторную работу, на экзамене получают неудовлетворительную оценку. Решение о повторном экзамене и сроках проведения экзамена принимает деканат после ликвидации студентом имеющейся задолженности по лабораторным работам.

кафедрой АСУ