ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

«Конструирование и разработка систем электронной оптики»

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях; по результатам выполнения контрольной работы; по результатам выполнения обучающимися индивидуальных заданий; по результатам проверки качества конспектов лекций и иных материалов. При оценивании (определении) результатов освоения дисциплины применяется традиционная система (отлично, хорошо, удовлетворительно, неудовлетворительно).

В случае, если студент не выполнил лабораторные работы, курсовой проект (работу), расчетные задания или контрольные работы, предусмотренные учебным графиком, выставляется оценка неудовлетворительно.

В качестве оценочных средств на протяжении семестра используется компьютерное тестирование.

По итогам курса обучающиеся сдают зачет. Форма проведения очная — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Паспорт фонда оценочных средств по дисциплине (модулю)

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой компетенции (или её части)	Наименование оценочного средства
1	Электрические и магнитные поля.	ПК-5	зачет
2	Методы расчета электрических полей.	ПК-5	зачет
3	Уравнения движения заряженных частиц в электромагнитном поле.	ПК-5	зачет
4	Классическая электронная оптика. Методы расчета основных параметров электростатических линз.	ПК-5	зачет
5	Цилиндрические, сферические и квадрупольные поля.	ПК-5	зачет
6	Принципы конструирования систем электронной и ионной оптики.	ПК-5	зачет

Список вопросов к экзамену

№	Вопрос					
1	Закон Кулона. Напряженность электрического поля. Поток напряженности электрического поля					
2	Закон Гаусса для электрического поля. Применение теоремы Гаусса для расчета поля тонкой заряженной нити и бесконечной плоскости. Электрический потенциал.					
3	Закон сохранения энергии в электростатике. Сила Лоренца. Формула полного тока. Применение формулы полного тока для расчета магнитного поля бесконечного прямолинейного тока.					
4	Закон Ампера. Закон Био-Савара-Лапласа. Поток магнитной индукции.					
5	Закон электромагнитной индукции. Закон Гаусса для магнитного поля.					
6	Уравнения Максвелла в дифференциальной форме, их физический смысл и связь с законами электромагнетизма в интегральной форме					
7	Уравнение Лапласа. Аналитические методы расчета полей (поле плоского конденсатора, поле цилиндрического конденсатора).					
8	Численно-аналитические методы расчета полей (метод разделения переменных для прямоугольника).					
9	Численные методы расчета полей (метод конечных разностей, метод конечных элементов, метод граничных элементов).					
10	Аналитические методы решения уравнений движения. Численные методы решения уравнений движения (метод Эйлера, метод Рунге-Кутта).					

11	Расчет распределения электрического поля с вращательной симметрией. Расчет					
11						
	распределения плоско-симметричного электрического поля.					
12	Движение параксиальных пучков электронов в аксиально-симметричном поле.					
13	Параметры увеличения в электронной линзе. Тонкие электростатические линзы.					
14	Геометрические параметры тонкой электростатической линзы. Геометрические параметры различных типов тонких электростатических линз (линзы-диафрагмы, одиночной линзы, иммерсионной линзы).					
15	Электростатические зеркала.					
16	Цилиндрическое зеркало – условие угловой фокусировки					
17	Сферическое зеркало – условие угловой фокусировки.					
18	Применение квадрупольных полей. Квадрупольные линзы. Гиперболические масс-спектрометры.					
19	САD/CAM/CAE системы проектирования систем электронной и ионной оптики. Допуски и посадки.					

Критерии оценивания компетенций (результатов)

- 1). Уровень усвоения материала, предусмотренного программой.
- 2). Умение анализировать материал, устанавливать причинно-следственные связи.
- 3). Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4). Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция)
- 5). Использование дополнительной литературы при подготовке ответов.

Шкала оценивания для оформления итоговой оценки по дисциплине

Оценка	Определение оценки		
Отлично	Отличное понимание предмета, всесторонние знания, отличные умения и владения		
Хорошо	Достаточно полное понимание предмета, хорошие знания, умения и владения		
Удовлетворительно	Приемлемое понимание предмета, удовлетворительные знания, умения и владения		
Неудовлетворительно	Результаты обучения не соответствуют минимальным требованиям		