МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет»

КАФЕДРА КОСМИЧЕСКИХ ТЕХНОЛОГИЙ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.4.Ф.02 «Основы теории решения изобретательских задач»

Направление подготовки

02.03.01 Математика и компьютерные науки

ОПОП академического бакалавриата «Математическое обеспечение космических информационных систем»

Квалификация (степень) выпускника — бакалавр Форма обучения — очная Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением теоретического зачета.

Форма проведения теоретического зачета — письменный ответ по билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается один теоретический вопрос. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения оценки. Оценивание знаний производится по системе «зачтено — не зачтено».

Паспорт фонда оценочных средств по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	Основные этапы развития ТРИЗ. Функции ТРИЗ. Постулаты ТРИЗ.	УК-1, ПК-6	зачёт
2	Законы развития технических систем.	УК-1, ПК-6	зачёт
3	Изобретательская ситуация и изобретательская задача. Идеальный конечный результат.	УК-1, ПК-6	зачёт
4	Виды противоречий в ТРИЗ. Приемы устранения технических противоречий, использование их.	УК-1, ПК-6	зачёт
5	Основные этапы и механизмы решения изобретательских задач методами ТРИЗ. Уровни изобретений.	УК-1, ПК-6	зачёт

6	Интеллектуальная собственность. Патентное право. Субъекты патентных прав. Лицензионный договор.	УК-1, ПК-6	зачёт
7	Изобретение. Полезная модель. Промышленный образец.	УК-1, ПК-6	зачёт

Шкала оценки сформированности компетенций

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме теоретического зачета, используется оценочная шкала «зачтено – не зачетено»:

Оценка «зачтено» выставляется обучающемуся, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и лабораторной работы, систематическая активная работа на практических занятиях.

Оценка «не зачтено» выставляется обучающемуся, который не справился с 50% вопросов и заданий при прохождении тестирования, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях элементов курса и использования предметной терминологии у обучающегося нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

Типовые контрольные задания или иные материалы

Вопросы для самостоятельной работы

- 1. Условия преобразования изобретательской задачи в творческую.
- 2. Творческая деятельность.
- 3. Закономерности творческой деятельности.
- 4. Последовательность формулирования задачи поиска технического решения.
- 5. Сущность метода проб и ошибок. Достоинства и недостатки метода.
- 6. Эвристические методы. Достоинства и недостатки методов.
- 7. Метод контрольных вопросов. Достоинства и недостатки метода.
- 8. Методы активизации поиска. Достоинства и недостатки методов активизации творчества.
- 9. Вепольный анализ.
- 10. Мозговой штурм.
- 11. Способы формирования противоречий при решении физических задач.
- 12. Техническое противоречие.
- 13. Приемы устранения технических противоречий.

Вопросы к зачёту по дисциплине

- 1. Виды инженерной деятельности.
- 2. Понятие творчества.

- 3. Творческое мышление. Составляющие творческой деятельности.
- 4. Инерция мышления и условия развития творчества.
- 5. Изобретательство.
- 6. Условия преобразования изобретательской задачи в творческую.
- 7. Классификация методов инженерного творчества.
- 8. Творческая деятельность.
- 9. Закономерности творческой деятельности.
- 10. Приемы развития творческого воображения.
- 11. Последовательность формулирования задачи поиска технического решения.
- 12. Сущность метода проб и ошибок. Достоинства и недостатки метода.
- 13. Эвристические методы. Достоинства и недостатки методов.
- 14. Метод контрольных вопросов. Достоинства и недостатки метода.
- 15. Методы активизации поиска. Достоинства и недостатки методов активизации творчества.
- 16. Вепольный анализ.
- 17. Мозговой штурм.
- 18. Морфологический анализ.
- 19. Синектика. Достоинства и недостатки метода.
- 20. Понятие алгоритма решения изобретательских задач (АРИЗ).
- 21. Основные понятия теории решения изобретательских задач (ТРИЗ).
- 22. Основные положения ТРИЗ.
- 23. Основные функции ТРИЗ.
- 24. Этапы АРИЗ.
- 25. Способы формирования противоречий при решении физических задач.
- 26. Техническое противоречие.
- 27. Приемы устранения технических противоречий.
- 28. Понятия «системный оператор», «подсистема», «надсистема».
- 29. Последовательность анализа задачи.
- 30. Этапы поиска идеального решения задачи.
- 31. Приемы решения проблемы с помощью изменения или замены задачи.
- 32. Метод оценки выбранного способа устранения физического противоречия.
- 33. Способы разрешения противоречий.
- 34. Цель и последовательность анализа хода решения задачи.
- 35. Понятие технической системы.
- 36. Этапы развития технических систем.
- 37. Законы развития технических систем.
- 38. Закономерности развития систем.