МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Микро- и наноэлектроника»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.ДВ.04.03 «Численные методы в физических исследованиях»

Направление подготовки 03.03.01 «Прикладные математика и физика»

Направленность (профиль) подготовки Электроника, квантовые системы и нанотехнологии

> Уровень подготовки Академический бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – очная

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

- ПК-2.1 анализирует научные данные, результаты экспериментов и наблюдений;
- ПК-5.2 обрабатывает результаты измерений и испытаний опытных образцов изделий "система в корпусе".

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на лабораторных работах. При оценивании результатов освоения лабораторных работ применяется шкала оценки «зачтено – не зачтено». Количество лабораторных работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой. Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением зачета. Форма проведения зачета — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый должен составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки, схемы и т.п.

Паспорт фонда оценочных средств по лисциплине (молулю)

N.C.	таспорт фонда оценочных средств по дисциплине (модулю)						
No	Контролируемые разделы (темы)	Код контролируемой	Вид, метод, форма				
П	дисциплины	компетенции	оценочного				
/		(или её части)	мероприятия				
П							
1	2	3	4				
1	Введение.	ПК-2.1	зачет				
2	Аппроксимация функции.	ПК-2.1, ПК-5.2	лабораторные рабо-				
			ты, зачет				
3	Численное интегрирование и	ПК-2.1, ПК-5.2	зачет				
	дифференцирование.						
4	Численные методы решения си-	ПК-2.1, ПК-5.2	лабораторные рабо-				
	-		ты, зачет				
	стем линейных уравнений.						
5	Численные методы решения нели-	ПК-2.1, ПК-5.2	лабораторные рабо-				
	нейных уравнений.		ты, зачет				

6	Численные методы решения обык-	ПК-2.1, ПК-5.2	лабораторные рабо-
	новенных дифференциальных.		ты, зачет
7	Численные методы решения	ПК-2.1, ПК-5.2	зачет
	уравнений с частными		
	производными.		
8	Методы обработки численных	ПК-2.1, ПК-5.2	зачет
	результатов.		

Формы текущего контроля

Текущий контроль по дисциплине «Численные методы в физических исследованиях» проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно и на практических занятиях, а также экспресс — опросов и заданий по лекционным материалам. Учебные пособия по дисциплине «Численные методы в физических исследованиях», рекомендуемые для самостоятельной работы обучающихся, содержат необходимый теоретический материал, тестовые вопросы по каждому из разделов дисциплины. Результаты ответов на вопросы тестовых заданий контролируются преподавателем.

Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является зачет. К зачету допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения зачета — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Критерии оценки компетенций обучающихся и шкалы оценивания

Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах практических занятий, а также самостоятельной работы оценивается по критериям шкалы оценок: «зачтено» – «не зачтено». Освоение материала дисциплины и контролируемых компетенций обучающегося служит основанием для допуска обучающегося к этапу промежуточной аттестации – зачету.

Целью проведения промежуточной аттестации (зачета) является проверка общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Численные методы в физических исследованиях».

Уровень теоретической подготовки определяется составом приобретенных компетенций, усвоенных им теоретических знаний и методов, а также умением осознанно, эффективно использовать их при решении задач схемотехнического проектирования микроэлектромеханических устройств.

Зачет организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, являются экзаменационный билет, содержание которого определяется ОПОП и Рабочей программой. Экзаменационный билет включает в себя, как правило, два вопроса, один из которых относятся к теоретической части дисциплины, а другой связан с практическими расчетами микроэлектромеханических схем.

Оценке на заключительной стадии зачета подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора. Применяются следующие критерии оценивания компетенций (результатов):

- уровень усвоения материала, предусмотренного программой;
- умение анализировать материал, устанавливать причинно-следственные связи;

- полнота, аргументированность, убежденность ответов на вопросы;
- качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

Применяется двухбальная шкала оценок: "зачтено", "не зачтено", что соответствует шкале - "компетенции студента в основном соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента не соответствуют требованиям $\Phi \Gamma OC$ BO".

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования при сдаче зачета.

«Зачтено»:

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов):

понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Не зачтено»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

При двух вопросах в билете общая оценка выставляется следующим образом:

«зачтено», если все оценки «зачтено»; «не зачтено», если одна и более оценок «не зачтено».

Вопросы к лабораторным занятиям по дисциплине

	Лабораторная работа № 1 «Аппроксимация функции»				
1	Общие сведения об аппроксимации.				
2	Точечная аппроксимация.				
3	Равномерное приближение.				
4	Глобальная и локальная аппроксимация.				
5	Линейная и квадратичная интерполяция.				
	Лабораторная работа № 2 «Численные методы решения систем линейных				
ypa	внений»				
1	Метод Гаусса.				
2	Метод прогонки.				
3	Метод простой итерации.				
4	Метод Зейделя.				
5	Метод верхней релаксации.				
	Лабораторная работа № 3 «Численные методы решения нелинейных				
уравнений»					
1	Метод деления отрезка пополам.				
2	Метод хорд.				
3	Метод Ньютона.				
4	Метод простой итерации.				
5	Модифицированный метод Ньютона-Шредера				
	Лабораторная работа № 4 «Численные методы решения обыкновенных				
диф	оференциальных уравнений»				
1	Методы Рунге-Кутты.				
2	Многошаговые методы Адамса.				

3 Метод Милна.

Вопросы к зачету

	Тема 1 «Введение.»				
1.1	Классификация численных методов.				
1.2	Устойчивость, корректность, сходимость.				
	Тема 2 «Аппроксимация функции»				
2.1	Точечная аппроксимация.				
2.2	Равномерное приближение.				
2.3	Глобальная и локальная аппроксимация.				
	Тема 3 «Численное интегрирование и дифференцирование»				
3.1	Методы прямоугольников и трапеций.				
3.2	Метод Симпсона.				
3.3	Метод Монте-Карло.				
3.4	Аппроксимация производных.				
3.5	Погрешность численного дифференцирования.				
3.6	Использование интерполяционных формул для дифференцирования.				
3.7	Метод неопределенных коэффициентов.				
3.8	Частные производные.				
3.9	Квадратурные формулы прямоугольников, трапеций и Симпсона.				
3.10	Практическое оценивание погрешностей				
3.11	Принцип Рунге.				
3.12	Квадратурные формулы Чебышева и Гаусса.				
	Тема 4 «Численные методы решения систем линейных				
урав	внений»				
4.1	Прямые методы.				
4.2	Метод Гаусса.				
4.3	Метод прогонки				
4.4	Итерационные методы.				
4.5	Метод простой итерации.				
4.6	Метод Зейделя.				
4.7	Метод верхней релаксации.				
	Тема 5 «Численные методы решения нелинейных				
	нений»				
5.1	Метод деления отрезка пополам.				
5.2	Метод хорд.				
5.3	Метод Ньютона.				
5.4	Метод простой итерации.				
	Тема 6 «Численные методы решения обыкновенных				
дифо	ференциальных »				
6.1	Одношаговые методы.				
6.2	Методы Эйлера.				
6.3	Метод Рунге-Кутта.				
6.4	Многошаговые методы.				
6.5	Метод Адамса.				
6.6	Метод прогноза-коррекции.				
	Тема 7 «Численные методы решения уравнений с				
	астными производными»				
7.1	Уравнение Лапласа.				
7.2	Волновое уравнение.				
7.3	I TY				
1.3	Уравнение теплопроводности.				

7.4	Линейное уравнение переноса.				
	Тема 8	«Методы	обработки	численных	
результатов»					
8.1	Основные Линейная и квадратичная регрессия.				
8.2	Геометрическая регрессия.				
8.3	Показательная регрессия.				

Составил

к.ф.-м..н., доцент кафедры микро- и наноэлектроники

Гудзев В.В.

Зав. кафедрой микро- и наноэлектроники

д.ф.-м.н., доцент

Литвинов В.Г.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Литвинов Владимир Георгиевич, Заведующий кафедрой МНЭЛ

18.09.25 20:03 (MSK)

Простая подпись